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1 Introduction

We are developing near-infrargtiliR) Raman spectroscopy
as a method to measure the concentrations of blood analyte
noninvasively. In this paper we describe our recent achieve-
ments with this technology, using glucose as an example.

It is estimated that the number of people afflicted with
diabetes mellitus will increase from 150 million to 220 mil-
lion worldwide from 2000 to 2016.There are many serious
long-term complications, the most significant being cardio-
vascular, retinal, renal and neuropathic. The Diabetes Contro
and Complications Trial report makes it clear that tight con-
trol of blood glucose levels, which entails frequent blood sam-
pling, significantly delays occurrence of these complications,
resulting in improved quality of life and reduced burden on
the health care systemConventional blood sampling meth-
ods are painful and have other undesirable features. Noninva-
sive (“transcutaneousf blood sampling methods are an at-
tractive alternative for monitoring glucose, as well as other

Abstract. We report the first successful study of the use of Raman
spectroscopy for quantitative, noninvasive (“transcutaneous”) mea-
surement of blood analytes, using glucose as an example. As an initial
evaluation of the ability of Raman spectroscopy to measure glucose
transcutaneously, we studied 17 healthy human subjects whose blood
glucose levels were elevated over a period of 2-3 h using a standard
glucose tolerance test protocol. During the test, 461 Raman spectra
were collected transcutaneously along with glucose reference values
provided by standard capillary blood analysis. A partial least squares
calibration was created from the data from each subject and validated
using leave-one-out cross validation. The mean absolute errors for
each subject were 7.8%*1.8% (mean=std) with R* values of 0.83
+0.10. We provide spectral evidence that the glucose spectrum is an
important part of the calibrations by analysis of the calibration regres-
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blood analytes. Several transcutaneous techniques are under
development; for a review see Ref. 3. Methods employing
é"lear-infraredNIR) spectroscopy combined with multivariate
regression analysis are among the most promisii@f the
noninvasive techniques for measuring glucose reported in the
scientific literature, none has demonstrated sufficient accuracy
for nonadjunctive clinical uséln addition, there has been no
substantial proof that the measured signals result from the
actual glucose concentratiohfnstead, it has been shown that
Ithe calibration models derived easily become over deter-
mined, and that chance correlations can be interpreted as
variations in glucose concentratiohThis indicates the need

for a noninvasive method providing greater specificity.

In this paper we demonstrate the use of another optical
technique, Raman spectroscopy, for transcutaneous monitor-
ing of glucose concentrations. Raman spectra exhibit distinct
narrow features characteristic of the molecules present in the
blood-tissue matrix, including glucose. Despite its weak sig-
nals, Raman spectroscopy has been shown to provide detailed
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Fig. 1 Experimental setup.

quantitative information about the chemical composition of shape of the spectrometer entrance slit. The spectra were col-

skin (proteins and lipids*®!! and corresponding changes
associated with the development of canftét and

lected by a cooled charge coupled device array detét8%0
X 1300 pixels, Roper Scientific, Trenton, Nebrrected for the

atherosclerosi¥' Because spectra from blood or tissue are image curvature in the vertical direction caused by the spec-
composed of contributions from many constituents, extraction trometer optics and grating and then binned in the vertical
of quantitative information requires use of a reliable multi- direction, resulting in a spectrum with intensities at 1340 fre-

variate calibration method, such as partial least-squ&ES)

regression analysiS.PLS analysis of Raman spectra has been

qguency intervals.
The intensity level of excitation light used in this experi-

successfully applied to quantitative measurements of glucosement was based upon a thorough study in which tissue

and other analytes in serdfrand whole blood samplééThe

samples were irradiated with various fluencdent) of 830

present study employs Raman spectroscopy for quantitativenm light. The samples were then examined by a pathologist
transcutaneous measurements. We show that glucose concerfor changes in histology. The selected 300 mW level was
tration variations in human volunteers can be quantitatively substantially lower than the levels that caused histological
measured. We also present clear spectral evidence that thehanges. Mechanisms for cooling presémtvivo, such as
spectrum of the glucose molecule is an important part of the blood flow, were not included in this stud§/With this result
calibration, the first such demonstration using a noninvasive as an input, our protocol was approved by MIT’s Committee

optical technique.

2 Materials and Methods

2.1 Instrumentation

on the Use of Humans as Experimental Subjects. A derma-
tologist examined the skin of the first volunteer before and
after the measurements and observed no change. Except for
one volunteer who developed a small blister, none of the vol-
unteers experienced any discomfort during the test or exhib-

Raman spectra were collected by means of a specially de-ited any skin damage afterwards.

signed instrument, optimized to collect Raman light emitted

from a scattering mediuntissug with high efficiency. The
setup(Fig. 1) used an 830 nm diode lasé?I-ECL-830-500,
Process Instruments, Salt Lake City, JUds the Raman exci-

At this power level, our signal to noise rati®NR), cal-
culated as the ratio of the collected signal to the noise at each
wave number value faa 3 min measurement averaged across
the spectral measurement range, 355—1545'cmas 6500:1.

tation source. The beam was passed through a bandpass filter

(Kaiser Optical Systems, Ann Arbor, Midirected toward a
paraboloidal mirrofPerkin-Elmer, Azusa, CAby means of a

2.2 In Vivo Data Collection

small prism, and focused onto the forearm of a human volun- Raman spectra were collected from the forearms of 20 healthy
teer with an average power of 300 mW and a spot area of Caucasian and Asian human volunteers following the intake
~1/mn?. Backscattered Raman light was collected by the of 220 mL of a beveragéSUN-DEX) containing 75 g of

mirror and passed through a notch fili&uper Notch Plus,

glucose. For each volunteer, all spectra were measured from

Kaiser Optical to reject the backscattered Rayleigh peak and the same area. The data from three of the volunteers were not
the specular reflection at 830 nm. The filtered light was trans- included in the study because of problems such as excessive

ferred to a spectrometéHolospecf/1.8i, Kaiser Optical by
means of an optical fiber bund{i®omack Fiber Optics, Wil-
liamsburg, VA, which converted the circular shape of the

movement during the test with two of the volunteers and a
small blister developed by the third. Using the data from the
remaining 17 volunteers, each spectrum was formed by aver-

collected light to a single row of fibers, in order to match the aging 90 consecuté/2 s acquisitiong3 min collection timeg

Journal of Biomedical Optics

031114-2

May/June 2005 * Vol. 10(3)



Enejder et al.: Raman spectroscopy for noninvasive glucose . . .

Spectra were acquired every 5 min over a period of 2433

h, on average forming a “measurement series” for each vol- . 8p. 8 B g B
unteer(27 spectra per series, on averadeuring this period, | g A A _
the blood glucose concentration typically doubled and then .
returned to its initial value. The glucose concentrations for all |, ' Collsgen]
volunteers ranged from 68 to 223 mg/dL. During the measure- |& 1o :':;:z
ments, reference capillary blood samples were collected from -“-!T i Welghe:0.24
finger sticks every 10 mif277 tota) and analyzed by means £ Foraiizian
of a Hemocue glucose analyzer, with a one std precision |~ ]| ' Werchsom
specified by the manufacturer &6 mg/dL. Reference mea- 7 Lol e
surements with this amount of imprecision could have added - Collsgen I
approximately 10% to our reported error in glucose measure- \ / : / ol
ment. Spline interpolation was used to provide reference val- 600 B0 1000 1200 WA 1600

ues at the 5 min intervals. Wevenumbers (em™)

Fig. 2 Raman spectra of human skin and its primary chemical com-
) ponents. Average weight coefficients, generated by means of least-
Raman spectra in the range 355-1545 tmere selected for squares-fits of the component spectra to the 461 Raman spectra from

processing. Spectra collectedvivo consisted of large, broad  the 17 subjects, are listed on the right. The prominent peaks are indi-
backgrounds superposed with small, sharp Raman featurescated. See Ref. 20 for vibrational band assignments.

We utilized two methods of processing the collected spectra.

In the first method, the background was removed by least-

squares fitting each spectrum to a fifth order polynomial and {hen mean centered. A PLS calibration was created, using Pir-
subtracting this polynomial from the spectrum, leaving the qette softwaréinfometrix, Bothell, WA and validated using
sharp Raman features. In the second method, the spectra wergyaye-one-out cross validatidhA PLS calibration regression
analyzed without removal of the background. Removmg the yector was formed from between 3 and 10 loading vectors
background offers the advantage of more clearly showing the from each calibration set. In most cases, the method utilized
Raman spectra. All of the Raman spectra illustrated in the g getermine the optimal number of factors was to first deter-
figures were pre-processed in this way. However, we found mine the number of factors that produced a minimum Stan-
that somewhat more accurate calibrations were obtained usingyard Error of ValidationSEV). Then, to reduce the chance of
data without the background removedean absolute error of  gyerfitting, the model chosen was the one with the lowest
7.8% versus 9.2% Intensity decreases and spectral shape nymber of factors such that there was not a significant differ-
changes in the background signal were observed during thegnce in its error compared to the model with the lowest $EV.
course of measurements on each individual. The effect of the\yjith four sets of data, we utilized more than the number of
polynomial subtraction method on Raman spectra extractedfactors determined optimal by the above method to obtain
from background signals with these changes may be the rea-gjiprations that are more strongly influenced by glucose. This
son that the errors are higher when the background is re-is explained further in the Analysis and Discussion section.
moved. Therefore, the performance results discussed belowrne predicted glucose concentrations were then obtained as
are based upon measured spectra without background rewhe scalar product of the measured Raman spectra and the

2.3 Raman Spectral Pre-Processing

moval. calibration regression vector plus the mean value of reference
) - glucose concentrations. A mean absolute error was calculated
2.4 Chemical Composition for the predicted glucose concentrations of theamples in

The features of the observauvivo Raman spectra were seen each data set as

to be dominated by spectral components of human skin. These

contributions were evaluated by least-squares fitting the ob- 1

served Raman spectra to Raman spectra of the key constitu- MAE = HZ ADS((9lumeas™ Yltrer)/lUyer) .
ents: human callus skithickened stratum corneum with high =1

keratin content collagen | and 11l to model dermal and epi-

dermal structural protein, and triolefa triglyceride to model 3 Results

subcutaneous fat. A Raman spectrum of human hemoglobin3.1 In-vivo Raman Spectra

‘_1_"23 also 'nCIldeeﬁ to acc%llmt for the blood vc;llume probe(rj]. Figure 2 compares a typical Raman spectrum from the fore-
€ spectra of other possible components, such as water, choz ., of 5 yolunteer to the Raman spectra of the primary

lesterol, elastin, phosphatidylcholine and actin, were a_Iso in- chemical components of the superficial layers of human skin
9|Ud6d' The specj[rum for each component was normalized by(epidermis, dermis, and subcutaneous.f&rom visual in-
its total Raman signal strength. spection, as well as by fitting the spectral components to the
) in vivo spectra, the dominant spectral feature was found to be
2.5 Spectral Data Processing collagen |, the main component of dermis. A percentage
The combined background/Raman spectra from each volun-weight coefficient of 0.620.08 was obtained, averaged over
teer were analyzed by means of partial least-squaresthe 461in vivo spectra. This is more than twice that found for
regressiort® The spectra were smoothed with a 13 point the second largest component, trioléd27+0.13), character-
Savitsky—Golay algorithm to increase the effective SNR and istic of subcutaneous fat. Keratinized tisg0e08+0.06), he-
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Fig. 3 (top) Predicted glucose concentrations tracking the reference values for one volunteer. (bottom) Predicted versus the reference values of the
same data, with a mean absolute error of 5.0% and an R? of 0.93.

moglobin (0.019+0.0) and collagen 111(0.011+0.02 all spectroscopy can be used for this purpose, thanks to its sharp,
contributed to a lesser extent. The contributions of water, cho- characteristic spectral featured:or a review see Ref. 21.
lesterol, elastin, phosphatidylcholine and actin were all found The fact that the multiple peaks of the Raman spectrum of
to be insignificant. The large standard deviations reflect the glucose are distinct from those of human skin tisfig. 5
variations in chemical composition among volunteers, enables differentiation of changes in glucose concentration
whereas within each measurement series the componenfrom changes in tissue characteristics.

weight coefficients were relatively constaistandard devia- In order to measure glucose concentrations in human skin,
tions an order of magnitude lower it is necessary to sample the innermost skin layer, the viable
dermis, which is well supplied by glucose from its capillary
network. The penetration depth of 830 nm excitation light and
A comparison of the predicted glucose concentrations to the the subcutaneous focal point of the collection optics facilitate
corresponding reference data from one of the volunteers issampling this layer. Evidence that the dermis is being sampled
shown in Fig. 3. The mean absolute er(btAE) in the vali- is provided by the fact that the Raman spectra collected from
dated data is 5.0% with aR? of 0.93. the forearms of the volunteers are dominated by colldgpn

This procedure was applied individually to data from each proximately 90% of the total protein content, according to a
of the 17 volunteers. A summary of the results of cross vali- least-squares jitthe major component of dernfiélts contri-
dated calibrations on the data set from each volunteer is bution is much stronger than that of the keratinized outermost
shown in Table 1. Although the example in Fig. 3 shows the skin layer. The underlying subcutaneous fat is also sampled,
calibration with the lowest MAE, the calibrations for many as evidenced by the fact that triglyceride is the second largest
other volunteers are also good, as can be seen in Table 1. contribution to the skin spectrum. Comparison with the Ra-

The cross validated calibration results from each of the 17 man spectrum of subcutaneous fat indicated that triglycerides
volunteers combined into one chart are shown in Fig. 4. For are the major Raman scatterers in adipose tigsiaéa not
the data from all 17 volunteers considered as one set, theshown. This establishes that the sampling depth extends be-
mean absolute error is 7.8% and tR&is 0.87. yond the dermis. Also worth noting is the small but significant
contribution from hemoglobin.

This study was an initial evaluation of the ability of Raman
The ability to noninvasively monitor variations in glucose spectroscopy to measure glucose noninvasively. Thus, the fo-
present at low concentrations in the blood-tissue matrix of cus was on determining its capability on a range of subjects
skin, a complex molecular medium, requires a sensitive and rather than on long-term tracking. The protocol did not in-
highly specific method. This study has shown that Raman clude measurement on the volunteers over a number of days

3.2 In Vivo Measurements

3.3 Analysis and Discussion
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Table 1 Summary of results from cross validated calibrations generated from the data set of measure-
ments on each of the 17 volunteers, sorted by R?.

Regression
No. of vector correlation

Volunteer R2 MAE Factors samples with glucose
1 0.93 5.0% 9 32 0.31

2 0.92 6.2% 7 27 0.14

3 0.92 6.9% 9 27 0.28
4 0.91 6.9% 9 25 -0.03

5 0.89 6.5% 8 26 0.41

6 0.89 7.0% 7 28 0.20
7 0.87 9.0% 3 26 0.06

8 0.87 8.5% 8 30 0.33

9 0.85 7.0% 10 25 0.20
10 0.83 8.4% 7 25 0.29
11 0.83 8.1% 6 20 0.21
12 0.79 5.2% 3 25 0.06
13 0.77 8.2% 7 30 0.12
14 0.74 10.2% 9 31 0.10
15 0.74 7.2% 8 28 0.12
16 0.66 10.4% 6 29 0.27
17 0.65 11.6% 8 26 0.12
Mean 0.83 7.8% 7.3 27.1 0.2

and thus independent data was not obtained. We note that aspectrum of glucose in water. The fact that numerous glucose
mean absolute error based upon cross validated calibrationspectrum peaks appear in the regression vector indicates that
provides only an indication of the calibration quality and is the glucose variation is indeed captured in this calibration. We
not a measure of the expected accuracy over a longer term. have used the correlation between the regression vector and
However, even understanding these limitations, the resultsthe spectrum of glucose as a numerical indicator of the im-
are promising. The calibrations appear good for many volun- portance of glucose in the calibration. We do not expect this
teers, with ten of the volunteers having &f of over 0.8 and correlation to be close to 1 because the regression vector also
mean absolute errors of 9% or less. All but two of the volun- includes spectral contributions from interferents. In Fig. 6, the
teers had afR? of more than 0.7. correlation is 0.31. We believe that this signifies that glucose
A question that occurs with this kind of procedure is is an important component in this calibration. We will con-
whether the calibration is based upon glucose. This is a ques-tinue to develop a base line to help us determine what number
tion that is relevant to many noninvasive measurement tech-for this measure to expect for a good calibration.
nologies and particularly to a protocol like a glucose tolerance  This appearance of glucose peaks in the regression vector
test and where no independent data are available. It is possibleand the correlation between it and the glucose spectrum is not
that variations specific to an individual or an instrument that as strong for all volunteers as is shown in the previous ex-
happen to be correlated with the glucose concentrations canample. These results indicate that we can use this correlation
dominate the calibratiof® as another factor along with MAER? and slope with which
Raman spectroscopy offers a unique way to address thisto judge the quality of calibrations for Raman measurements.
question. Due to the sharp features of Raman spectra, it is Use of the correlation of the regression vector with the
possible to develop a sense of the importance of glucose inglucose spectrum as an additional metric with which to judge
the calibration by comparing the calibration regression vector the quality of calibrations has helped us improve some of the
to the spectrum of glucose. As an example, Fig. 6 comparescalibrations. In the calibrations for four of the volunte€2s
the regression vector for the calibration shown in Fig. 3 to the 11, 13 and 1), the numbers of factors having the lowest
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the same range as those for other volunteers. However, the
low correlations with glucose suggest that these calibrations

may be based, in part at least, upon spurious factors. The
calibration for Volunteer 4 also appears good, as judged by an

MAE of 6.9% and arR? of 0.91. However a—0.03 correla-

tion between its regression vector and glucose suggests that
this calibration is also based upon spurious factors.

An additional way to determine the influence of glucose in
the calibrations is to examine the results of calibrations
formed by combining data sets from a number of volunteers
together, as in the following procedure.

Data from a number of volunteers were combined into one
set. A calibration algorithm was generated for the entire set
and validated by leave-one-out cross validation. The mean
A o o c E absolute error is expected to rise as data from more volunteers
o are added to the set because the different chemical and physi-
0 50 o 150 20 0 cal characteristics among various people increase the spectral

reference glucose, mg/dL variability. However, a limited rise would indicate that the
signal from the common variable, glucose, is strong enough to
be seen among the other variations. We have found through

%0

20

150

100

predicted glucose, ma/dL

Fig. 4 Cross validated results for 17 volunteers calibrated individually
shown on a Clark Error Grid. The Clark Error Grid provides an assess-

ment of the clinical importance of errors. The A (£20%) and B zones simulation,in vitro testing and processing this transcutaneous

indicate errors without serious clinical results. Zones C, D, and E data that the correlation between glucose and spurious factors

indicate clinically unacceptable errors: C results in treatment which that may exist with one volunteer is weakened by calibration

overcompensates acceptable glucose levels, D results in failure to using data from multiple volunteers. A factor which is due to

Eeat hypo- or hyperglycemia and E results in dangerously treating the environment/instrument that happens to be correlated with

ypoglycemia as hyperglycemia or vice versa. The average prediction . . .

error for this set is 7.7% and the R? is 0.87. glucose during the test protocol for one volunteer is less likely
to be correlated to glucose during test protocols for multiple
volunteers.

SEVs were 2, 3 or 4. The regression vectors generated by the A calibration was generated on data comprising 244
use of these numbers of factors had a very low correlation samples from a group of nine volunteers whose calibration
(even negative in someo the glucose spectrum. We found quality appears to be relatively high. The fact that the opti-
that increasing the number of factors beyond the point of low- mum number of factors for this calibration is 17 indicates that
est SEV significantly improved the correlation with glucose. many differences among volunteers are being accounted for.
This change brought the numbers of factors more in line with The results are shown in Fig. 7. A mean absolute error for this
calibrations on other volunteers. In these cases, calibrationsgroup of 12.8% and aR? of 0.70 is an indication that glucose
with a higher correlation with glucose, even though they have is an important part of the calibration. Stronger evidence that
a higher SEV, are more strongly influenced by glucose. We this calibration is based on glucose is provided by observing
have also found that for 2 voluntee{d and 12, where the the regression vector for the calibration on this data, also
optimum number of factors is 3, increasing the number of shown in Fig. 7. Many glucose spectrum peaks are seen in the
factors does not increase a low correlat{or06 in both cases calibration regression vector. The strong correlation between
to glucose. The MAEs anB?’s for these calibrations are in  the regression vector and the glucose spectrum of 0.45, even
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Fig. 5 The Raman spectrum of glucose in water compared to a typical spectrum of human skin. The spectra are centered about the horizontal axis
as a result of the background removal process.
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Fig. 6 The regression vector for the calibration shown in Fig. 3 and the spectrum of glucose, scaled to fit on the same chart. Numerous peaks in the
glucose spectrum match peaks in the regression vector, as shown by the arrows, indicating that glucose is an important part of the calibration.

though there are 17 factors, indicates that the glucose signal isis that even with this data set, the regression vector includes
strong enough to be detected among the large variances inmany peaks of glucose, as is shown in Fig. 8. Even though
spectra that occur among nine different volunteers. This is many more parameters are changing, as indicated by a model
direct evidence that spectrum of the glucose molecule has awith 21 factors, the correlation between the regression vector
strong influence in the calibration. and the glucose spectrum of 0.35 indicates that glucose is still
When data from all 17 volunteers are combined into one a key factor.

group, the average error grows to 16.9%. Although this error ~ Unlike many methods of measuring glucose, with which
is higher than our eventual target, this level of error is encour- there are valid questions about whether glucose is being mea-
aging for an initial transcutaneous study. A very positive result sured, the strong presence of glucose in the regression vector
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Fig. 7 (top) Predicted versus reference results using a common calibration algorithm generated on data from nine volunteers. The mean absolute
error is 12.8% and the R? is 0.70. (bottom): The calibration regression vector compared to the glucose spectrum. The correlation between the
regression vector and the glucose spectrum is 0.45.
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Fig. 8 (top) Predicted versus reference results for all 17 volunteers combined into one calibration group. The MAE is 16.9%. (bottom) The
calibration regression vector compared to the glucose spectrum. Many peaks of glucose can be observed in the regression vector.

developed from Raman measurements provides direct spectrafjuirements. To our knowledge, this is the first report of opti-
evidence that the measurements result from the active glucosecal noninvasive glucose measurements to clearly demonstrate
concentrations. that the spectral features of the glucose molecule are an im-
This study has provided us with important issues to ad- portant part of the calibrations.

dress so as to better understand the scientific basis for the
measurement and calibration processes and to bring this tech-4
nology closer to practical use. We believe that determining the __ i )
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