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Abstract. We report the first successful study of the use of Raman
spectroscopy for quantitative, noninvasive (‘‘transcutaneous’’) mea-
surement of blood analytes, using glucose as an example. As an initial
evaluation of the ability of Raman spectroscopy to measure glucose
transcutaneously, we studied 17 healthy human subjects whose blood
glucose levels were elevated over a period of 2–3 h using a standard
glucose tolerance test protocol. During the test, 461 Raman spectra
were collected transcutaneously along with glucose reference values
provided by standard capillary blood analysis. A partial least squares
calibration was created from the data from each subject and validated
using leave-one-out cross validation. The mean absolute errors for
each subject were 7.8%61.8% (mean6std) with R2 values of 0.83
60.10. We provide spectral evidence that the glucose spectrum is an
important part of the calibrations by analysis of the calibration regres-
sion vectors. © 2005 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1920212]
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1 Introduction
We are developing near-infrared~NIR! Raman spectroscopy
as a method to measure the concentrations of blood analyt
noninvasively. In this paper we describe our recent achieve
ments with this technology, using glucose as an example.

It is estimated that the number of people afflicted with
diabetes mellitus will increase from 150 million to 220 mil-
lion worldwide from 2000 to 2010.1 There are many serious
long-term complications, the most significant being cardio-
vascular, retinal, renal and neuropathic. The Diabetes Contro
and Complications Trial report makes it clear that tight con-
trol of blood glucose levels, which entails frequent blood sam-
pling, significantly delays occurrence of these complications
resulting in improved quality of life and reduced burden on
the health care system.2 Conventional blood sampling meth-
ods are painful and have other undesirable features. Noninv
sive ~‘‘transcutaneous’’! blood sampling methods are an at-
tractive alternative for monitoring glucose, as well as other

Address all correspondence to Thomas G. Scecina. Tel: 617-253-4520; Fax:
617-253-4513; E-mail: tscecina@mit.edu
031114Journal of Biomedical Optics
s

l

-

blood analytes. Several transcutaneous techniques are u
development; for a review see Ref. 3. Methods employ
near-infrared~NIR! spectroscopy combined with multivariat
regression analysis are among the most promising.4–6 Of the
noninvasive techniques for measuring glucose reported in
scientific literature, none has demonstrated sufficient accu
for nonadjunctive clinical use.7 In addition, there has been n
substantial proof that the measured signals result from
actual glucose concentrations.3 Instead, it has been shown th
the calibration models derived easily become over de
mined, and that chance correlations can be interpreted
variations in glucose concentrations.8,9 This indicates the need
for a noninvasive method providing greater specificity.

In this paper we demonstrate the use of another opt
technique, Raman spectroscopy, for transcutaneous mon
ing of glucose concentrations. Raman spectra exhibit dist
narrow features characteristic of the molecules present in
blood-tissue matrix, including glucose. Despite its weak s
nals, Raman spectroscopy has been shown to provide det
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Fig. 1 Experimental setup.
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quantitative information about the chemical composition of
skin ~proteins and lipids!,10,11 and corresponding changes
associated with the development of cancer12,13 and
atherosclerosis.14 Because spectra from blood or tissue are
composed of contributions from many constituents, extraction
of quantitative information requires use of a reliable multi-
variate calibration method, such as partial least-squares~PLS!
regression analysis.15 PLS analysis of Raman spectra has been
successfully applied to quantitative measurements of glucos
and other analytes in serum16 and whole blood samples.17 The
present study employs Raman spectroscopy for quantitativ
transcutaneous measurements. We show that glucose conce
tration variations in human volunteers can be quantitatively
measured. We also present clear spectral evidence that t
spectrum of the glucose molecule is an important part of the
calibration, the first such demonstration using a noninvasive
optical technique.

2 Materials and Methods
2.1 Instrumentation
Raman spectra were collected by means of a specially de
signed instrument, optimized to collect Raman light emitted
from a scattering medium~tissue! with high efficiency. The
setup~Fig. 1! used an 830 nm diode laser~PI-ECL-830-500,
Process Instruments, Salt Lake City, UT! as the Raman exci-
tation source. The beam was passed through a bandpass fil
~Kaiser Optical Systems, Ann Arbor, MI!, directed toward a
paraboloidal mirror~Perkin-Elmer, Azusa, CA! by means of a
small prism, and focused onto the forearm of a human volun
teer with an average power of 300 mW and a spot area o
;1/mm2. Backscattered Raman light was collected by the
mirror and passed through a notch filter~Super Notch Plus,
Kaiser Optical! to reject the backscattered Rayleigh peak and
the specular reflection at 830 nm. The filtered light was trans
ferred to a spectrometer~Holospecf/1.8i , Kaiser Optical! by
means of an optical fiber bundle~Romack Fiber Optics, Wil-
liamsburg, VA!, which converted the circular shape of the
collected light to a single row of fibers, in order to match the
031114of Biomedical Optics
n-

e

-

er

shape of the spectrometer entrance slit. The spectra were
lected by a cooled charge coupled device array detector~1340
31300 pixels, Roper Scientific, Trenton, NJ! corrected for the
image curvature in the vertical direction caused by the sp
trometer optics and grating and then binned in the verti
direction, resulting in a spectrum with intensities at 1340 f
quency intervals.

The intensity level of excitation light used in this exper
ment was based upon a thorough study in which tis
samples were irradiated with various fluences~J/cm2! of 830
nm light. The samples were then examined by a patholo
for changes in histology. The selected 300 mW level w
substantially lower than the levels that caused histolog
changes. Mechanisms for cooling presentin vivo, such as
blood flow, were not included in this study.18 With this result
as an input, our protocol was approved by MIT’s Committ
on the Use of Humans as Experimental Subjects. A der
tologist examined the skin of the first volunteer before a
after the measurements and observed no change. Excep
one volunteer who developed a small blister, none of the v
unteers experienced any discomfort during the test or ex
ited any skin damage afterwards.

At this power level, our signal to noise ratio~SNR!, cal-
culated as the ratio of the collected signal to the noise at e
wave number value for a 3 min measurement averaged acro
the spectral measurement range, 355–1545 cm21, was 6500:1.

2.2 In Vivo Data Collection
Raman spectra were collected from the forearms of 20 hea
Caucasian and Asian human volunteers following the inta
of 220 mL of a beverage~SUN-DEX! containing 75 g of
glucose. For each volunteer, all spectra were measured
the same area. The data from three of the volunteers were
included in the study because of problems such as exces
movement during the test with two of the volunteers and
small blister developed by the third. Using the data from
remaining 17 volunteers, each spectrum was formed by a
aging 90 consecutive 2 s acquisitions~3 min collection times!.
-2 May/June 2005 d Vol. 10(3)
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Spectra were acquired every 5 min over a period of 2–3 h~2.3
h, on average!, forming a ‘‘measurement series’’ for each vol-
unteer~27 spectra per series, on average!. During this period,
the blood glucose concentration typically doubled and then
returned to its initial value. The glucose concentrations for al
volunteers ranged from 68 to 223 mg/dL. During the measure
ments, reference capillary blood samples were collected from
finger sticks every 10 min~277 total! and analyzed by means
of a Hemocue glucose analyzer, with a one std precision
specified by the manufacturer as<6 mg/dL. Reference mea-
surements with this amount of imprecision could have adde
approximately 10% to our reported error in glucose measure
ment. Spline interpolation was used to provide reference val
ues at the 5 min intervals.

2.3 Raman Spectral Pre-Processing
Raman spectra in the range 355–1545 cm21 were selected for
processing. Spectra collectedin vivo consisted of large, broad
backgrounds superposed with small, sharp Raman feature
We utilized two methods of processing the collected spectra
In the first method, the background was removed by least
squares fitting each spectrum to a fifth order polynomial and
subtracting this polynomial from the spectrum, leaving the
sharp Raman features. In the second method, the spectra we
analyzed without removal of the background. Removing the
background offers the advantage of more clearly showing th
Raman spectra. All of the Raman spectra illustrated in the
figures were pre-processed in this way. However, we found
that somewhat more accurate calibrations were obtained usin
data without the background removed~mean absolute error of
7.8% versus 9.2%!. Intensity decreases and spectral shape
changes in the background signal were observed during th
course of measurements on each individual. The effect of th
polynomial subtraction method on Raman spectra extracte
from background signals with these changes may be the re
son that the errors are higher when the background is re
moved. Therefore, the performance results discussed belo
are based upon measured spectra without background r
moval.

2.4 Chemical Composition
The features of the observedin vivo Raman spectra were seen
to be dominated by spectral components of human skin. Thes
contributions were evaluated by least-squares fitting the ob
served Raman spectra to Raman spectra of the key constit
ents: human callus skin~thickened stratum corneum with high
keratin content!, collagen I and III to model dermal and epi-
dermal structural protein, and triolein~a triglyceride! to model
subcutaneous fat. A Raman spectrum of human hemoglobi
was also included to account for the blood volume probed
The spectra of other possible components, such as water, ch
lesterol, elastin, phosphatidylcholine and actin, were also in
cluded. The spectrum for each component was normalized b
its total Raman signal strength.

2.5 Spectral Data Processing
The combined background/Raman spectra from each volun
teer were analyzed by means of partial least-square
regression.15 The spectra were smoothed with a 13 point
Savitsky–Golay algorithm to increase the effective SNR and
031114Journal of Biomedical Optics
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then mean centered. A PLS calibration was created, using
ouette software~Infometrix, Bothell, WA! and validated using
leave-one-out cross validation.19 A PLS calibration regression
vector was formed from between 3 and 10 loading vect
from each calibration set. In most cases, the method utili
to determine the optimal number of factors was to first de
mine the number of factors that produced a minimum St
dard Error of Validation~SEV!. Then, to reduce the chance o
overfitting, the model chosen was the one with the low
number of factors such that there was not a significant dif
ence in its error compared to the model with the lowest SEV15

With four sets of data, we utilized more than the number
factors determined optimal by the above method to obt
calibrations that are more strongly influenced by glucose. T
is explained further in the Analysis and Discussion secti
The predicted glucose concentrations were then obtaine
the scalar product of the measured Raman spectra and
calibration regression vector plus the mean value of refere
glucose concentrations. A mean absolute error was calcul
for the predicted glucose concentrations of then samples in
each data set as

MAE5
1

n (
i 51

n

Abs~~glumeas2gluref!/gluref).

3 Results
3.1 In-vivo Raman Spectra
Figure 2 compares a typical Raman spectrum from the fo
arm of a volunteer to the Raman spectra of the prim
chemical components of the superficial layers of human s
~epidermis, dermis, and subcutaneous fat!. From visual in-
spection, as well as by fitting the spectral components to
in vivo spectra, the dominant spectral feature was found to
collagen I, the main component of dermis. A percenta
weight coefficient of 0.6260.08 was obtained, averaged ov
the 461in vivo spectra. This is more than twice that found f
the second largest component, triolein~0.2760.13!, character-
istic of subcutaneous fat. Keratinized tissue~0.0860.06!, he-

Fig. 2 Raman spectra of human skin and its primary chemical com-
ponents. Average weight coefficients, generated by means of least-
squares-fits of the component spectra to the 461 Raman spectra from
the 17 subjects, are listed on the right. The prominent peaks are indi-
cated. See Ref. 20 for vibrational band assignments.
-3 May/June 2005 d Vol. 10(3)
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Fig. 3 (top) Predicted glucose concentrations tracking the reference values for one volunteer. (bottom) Predicted versus the reference values of the
same data, with a mean absolute error of 5.0% and an R2 of 0.93.
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moglobin ~0.01960.01! and collagen III ~0.01160.02! all
contributed to a lesser extent. The contributions of water, cho
lesterol, elastin, phosphatidylcholine and actin were all found
to be insignificant. The large standard deviations reflect the
variations in chemical composition among volunteers,
whereas within each measurement series the compone
weight coefficients were relatively constant~standard devia-
tions an order of magnitude lower!.

3.2 In Vivo Measurements
A comparison of the predicted glucose concentrations to th
corresponding reference data from one of the volunteers i
shown in Fig. 3. The mean absolute error~MAE! in the vali-
dated data is 5.0% with anR2 of 0.93.

This procedure was applied individually to data from each
of the 17 volunteers. A summary of the results of cross vali-
dated calibrations on the data set from each volunteer i
shown in Table 1. Although the example in Fig. 3 shows the
calibration with the lowest MAE, the calibrations for many
other volunteers are also good, as can be seen in Table 1.

The cross validated calibration results from each of the 17
volunteers combined into one chart are shown in Fig. 4. Fo
the data from all 17 volunteers considered as one set, th
mean absolute error is 7.8% and theR2 is 0.87.

3.3 Analysis and Discussion
The ability to noninvasively monitor variations in glucose
present at low concentrations in the blood-tissue matrix o
skin, a complex molecular medium, requires a sensitive an
highly specific method. This study has shown that Raman
031114Journal of Biomedical Optics
t

spectroscopy can be used for this purpose, thanks to its sh
characteristic spectral features.~For a review see Ref. 21.!
The fact that the multiple peaks of the Raman spectrum
glucose are distinct from those of human skin tissue~Fig. 5!
enables differentiation of changes in glucose concentra
from changes in tissue characteristics.

In order to measure glucose concentrations in human s
it is necessary to sample the innermost skin layer, the via
dermis, which is well supplied by glucose from its capilla
network. The penetration depth of 830 nm excitation light a
the subcutaneous focal point of the collection optics facilit
sampling this layer. Evidence that the dermis is being samp
is provided by the fact that the Raman spectra collected fr
the forearms of the volunteers are dominated by collagen~ap-
proximately 90% of the total protein content, according to
least-squares fit!, the major component of dermis.22 Its contri-
bution is much stronger than that of the keratinized outerm
skin layer. The underlying subcutaneous fat is also samp
as evidenced by the fact that triglyceride is the second larg
contribution to the skin spectrum. Comparison with the R
man spectrum of subcutaneous fat indicated that triglyceri
are the major Raman scatterers in adipose tissue~data not
shown!. This establishes that the sampling depth extends
yond the dermis. Also worth noting is the small but significa
contribution from hemoglobin.

This study was an initial evaluation of the ability of Rama
spectroscopy to measure glucose noninvasively. Thus, the
cus was on determining its capability on a range of subje
rather than on long-term tracking. The protocol did not
clude measurement on the volunteers over a number of d
-4 May/June 2005 d Vol. 10(3)
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Table 1 Summary of results from cross validated calibrations generated from the data set of measure-
ments on each of the 17 volunteers, sorted by R2.

Volunteer R2 MAE Factors
No. of
samples

Regression
vector correlation

with glucose

1 0.93 5.0% 9 32 0.31

2 0.92 6.2% 7 27 0.14

3 0.92 6.9% 9 27 0.28

4 0.91 6.9% 9 25 −0.03

5 0.89 6.5% 8 26 0.41

6 0.89 7.0% 7 28 0.20

7 0.87 9.0% 3 26 0.06

8 0.87 8.5% 8 30 0.33

9 0.85 7.0% 10 25 0.20

10 0.83 8.4% 7 25 0.29

11 0.83 8.1% 6 20 0.21

12 0.79 5.2% 3 25 0.06

13 0.77 8.2% 7 30 0.12

14 0.74 10.2% 9 31 0.10

15 0.74 7.2% 8 28 0.12

16 0.66 10.4% 6 29 0.27

17 0.65 11.6% 8 26 0.12

Mean 0.83 7.8% 7.3 27.1 0.2
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and thus independent data was not obtained. We note that
mean absolute error based upon cross validated calibratio
provides only an indication of the calibration quality and is
not a measure of the expected accuracy over a longer term

However, even understanding these limitations, the result
are promising. The calibrations appear good for many volun
teers, with ten of the volunteers having anR2 of over 0.8 and
mean absolute errors of 9% or less. All but two of the volun-
teers had anR2 of more than 0.7.

A question that occurs with this kind of procedure is
whether the calibration is based upon glucose. This is a que
tion that is relevant to many noninvasive measurement tech
nologies and particularly to a protocol like a glucose tolerance
test and where no independent data are available. It is possib
that variations specific to an individual or an instrument that
happen to be correlated with the glucose concentrations ca
dominate the calibration.8,9

Raman spectroscopy offers a unique way to address th
question. Due to the sharp features of Raman spectra, it
possible to develop a sense of the importance of glucose i
the calibration by comparing the calibration regression vecto
to the spectrum of glucose. As an example, Fig. 6 compare
the regression vector for the calibration shown in Fig. 3 to the
031114al Optics
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spectrum of glucose in water. The fact that numerous gluc
spectrum peaks appear in the regression vector indicates
the glucose variation is indeed captured in this calibration.
have used the correlation between the regression vector
the spectrum of glucose as a numerical indicator of the
portance of glucose in the calibration. We do not expect t
correlation to be close to 1 because the regression vector
includes spectral contributions from interferents. In Fig. 6,
correlation is 0.31. We believe that this signifies that gluco
is an important component in this calibration. We will co
tinue to develop a base line to help us determine what num
for this measure to expect for a good calibration.

This appearance of glucose peaks in the regression ve
and the correlation between it and the glucose spectrum is
as strong for all volunteers as is shown in the previous
ample. These results indicate that we can use this correla
as another factor along with MAE,R2 and slope with which
to judge the quality of calibrations for Raman measureme

Use of the correlation of the regression vector with t
glucose spectrum as an additional metric with which to jud
the quality of calibrations has helped us improve some of
calibrations. In the calibrations for four of the volunteers~2,
11, 13 and 17!, the numbers of factors having the lowe
-5 May/June 2005 d Vol. 10(3)
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Fig. 4 Cross validated results for 17 volunteers calibrated individually
shown on a Clark Error Grid. The Clark Error Grid provides an assess-
ment of the clinical importance of errors. The A (620%) and B zones
indicate errors without serious clinical results. Zones C, D, and E
indicate clinically unacceptable errors: C results in treatment which
overcompensates acceptable glucose levels, D results in failure to
treat hypo- or hyperglycemia and E results in dangerously treating
hypoglycemia as hyperglycemia or vice versa. The average prediction
error for this set is 7.7% and the R2 is 0.87.
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SEVs were 2, 3 or 4. The regression vectors generated by th
use of these numbers of factors had a very low correlation
~even negative in some! to the glucose spectrum. We found
that increasing the number of factors beyond the point of low
est SEV significantly improved the correlation with glucose.
This change brought the numbers of factors more in line with
calibrations on other volunteers. In these cases, calibration
with a higher correlation with glucose, even though they have
a higher SEV, are more strongly influenced by glucose. We
have also found that for 2 volunteers~7 and 12!, where the
optimum number of factors is 3, increasing the number of
factors does not increase a low correlation~0.06 in both cases!
to glucose. The MAEs andR2’s for these calibrations are in
031114Journal of Biomedical Optics
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the same range as those for other volunteers. However,
low correlations with glucose suggest that these calibrati
may be based, in part at least, upon spurious factors.
calibration for Volunteer 4 also appears good, as judged by
MAE of 6.9% and anR2 of 0.91. However a20.03 correla-
tion between its regression vector and glucose suggests
this calibration is also based upon spurious factors.

An additional way to determine the influence of glucose
the calibrations is to examine the results of calibratio
formed by combining data sets from a number of volunte
together, as in the following procedure.

Data from a number of volunteers were combined into o
set. A calibration algorithm was generated for the entire
and validated by leave-one-out cross validation. The m
absolute error is expected to rise as data from more volunt
are added to the set because the different chemical and p
cal characteristics among various people increase the spe
variability. However, a limited rise would indicate that th
signal from the common variable, glucose, is strong enoug
be seen among the other variations. We have found thro
simulation,in vitro testing and processing this transcutaneo
data that the correlation between glucose and spurious fac
that may exist with one volunteer is weakened by calibrat
using data from multiple volunteers. A factor which is due
the environment/instrument that happens to be correlated
glucose during the test protocol for one volunteer is less lik
to be correlated to glucose during test protocols for multi
volunteers.

A calibration was generated on data comprising 2
samples from a group of nine volunteers whose calibrat
quality appears to be relatively high. The fact that the op
mum number of factors for this calibration is 17 indicates th
many differences among volunteers are being accounted
The results are shown in Fig. 7. A mean absolute error for
group of 12.8% and anR2 of 0.70 is an indication that glucos
is an important part of the calibration. Stronger evidence t
this calibration is based on glucose is provided by observ
the regression vector for the calibration on this data, a
shown in Fig. 7. Many glucose spectrum peaks are seen in
calibration regression vector. The strong correlation betw
the regression vector and the glucose spectrum of 0.45, e
Fig. 5 The Raman spectrum of glucose in water compared to a typical spectrum of human skin. The spectra are centered about the horizontal axis
as a result of the background removal process.
-6 May/June 2005 d Vol. 10(3)
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Fig. 6 The regression vector for the calibration shown in Fig. 3 and the spectrum of glucose, scaled to fit on the same chart. Numerous peaks in the
glucose spectrum match peaks in the regression vector, as shown by the arrows, indicating that glucose is an important part of the calibration.
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though there are 17 factors, indicates that the glucose signal
strong enough to be detected among the large variances
spectra that occur among nine different volunteers. This is
direct evidence that spectrum of the glucose molecule has
strong influence in the calibration.

When data from all 17 volunteers are combined into one
group, the average error grows to 16.9%. Although this erro
is higher than our eventual target, this level of error is encour
aging for an initial transcutaneous study. A very positive resul
031114Journal of Biomedical Optics
s
n
is that even with this data set, the regression vector inclu
many peaks of glucose, as is shown in Fig. 8. Even tho
many more parameters are changing, as indicated by a m
with 21 factors, the correlation between the regression ve
and the glucose spectrum of 0.35 indicates that glucose is
a key factor.

Unlike many methods of measuring glucose, with whi
there are valid questions about whether glucose is being m
sured, the strong presence of glucose in the regression ve
Fig. 7 (top) Predicted versus reference results using a common calibration algorithm generated on data from nine volunteers. The mean absolute
error is 12.8% and the R2 is 0.70. (bottom): The calibration regression vector compared to the glucose spectrum. The correlation between the
regression vector and the glucose spectrum is 0.45.
-7 May/June 2005 d Vol. 10(3)
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Fig. 8 (top) Predicted versus reference results for all 17 volunteers combined into one calibration group. The MAE is 16.9%. (bottom) The
calibration regression vector compared to the glucose spectrum. Many peaks of glucose can be observed in the regression vector.
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developed from Raman measurements provides direct spectr
evidence that the measurements result from the active gluco
concentrations.

This study has provided us with important issues to ad
dress so as to better understand the scientific basis for th
measurement and calibration processes and to bring this tec
nology closer to practical use. We believe that determining the
causes of the decreasing background signal observed durin
the course of measurements on each individual and reducin
the impact of this change on the background subtracted Ra
man signal will improve our performance. We have realized
that instrument wave number and intensity stability is critical
to obtaining good performance using independent data. T
this end we have improved the stability of our system for
future studies. Creating improved methods of processing dat
to reduce prediction error and increase robustness is anoth
important goal. We also are continuing our effort to increase
our understanding of and ability to utilize the information that
exists in the regression vector.

4 Conclusions
This study demonstrates the feasibility of noninvasive blood
glucose measurements using Raman spectroscopy. This res
combined with our earlier report on whole blood measure-
ment of a number of analytes17 suggests the feasibility of
noninvasive measurement of other blood analytes as well.
also projects the promise that technology based upon Rama
spectroscopy can be developed to meet clinical accuracy re
031114Journal of Biomedical Optics
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quirements. To our knowledge, this is the first report of op
cal noninvasive glucose measurements to clearly demons
that the spectral features of the glucose molecule are an
portant part of the calibrations.
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