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Raman spectroscopy is a powerful technique for identifying the molecular composi-
tion of materials. It can also be used to quantify the substances present. Recently,
quantitative Raman spectroscopy has been used in biological tissue for disease di-
agnosis and, in blood, to measure concentrations of analytes such as glucose non-
invasively. A characteristic feature of biological tissue is its high turbidity, due to
the interplay of scattering and absorption. In addition, the complexity of biological
tissue results in significant spectral overlap. These factors make the quantification
of analyte concentrations difficult. Measurement accuracy can be improved if these
difficulties can be overcome. This chapter discusses the application of quantitative
Raman spectroscopy to biological tissue. Section 12.1 provides an introduction to
Raman spectroscopy. Section 12.2 reviews existing work relevant to quantitative
analysis in biological media. Quantitative and biological aspects of Raman spec-
troscopy are discussed in sections 12.3 and 12.4. Section 12.5 discusses instrumen-
tation, using the instrument developed in our laboratory as an example. Data prepro-
cessing is discussed in section 12.6. In section 12.7 we review our glucose studies
in blood serum, whole blood and human subjects. Section 12.8 introduces two new
techniques, constrained regularization (CR) and intrinsic Raman spectroscopy (IRS),
which are shown to significantly improve measurement accuracy. Additional consid-
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erations are discussed in the context of future directions. Section 12.9 concludes the
chapter.

Key words: Raman spectroscopy, glucose sensing, turbidity, scattering, absorption,
biological tissue, intrinsic Raman spectroscopy (IRS).

12.1 Introduction

12.1.1 Introduction to Raman spectroscopy

Light scattering is a well-known form of the light-matter interaction process. Scat-
tering redirects light incident on an atom or molecule. Most of the scattered light has
the same frequency as the incident light, and therefore there is no energy exchange.
This process is called elastic scattering and, for scatterers small compared to the
wavelength, it gives rise to Rayleigh scattering. A tiny amount of the scattered light,
however, is shifted in frequency due to transfer of energy, most commonly vibra-
tional energy, to or from the molecule. The excitation light can set the molecule
into vibration at the molecular vibrational frequency,νV . This process, called Ra-
man scattering, is an inelastic scattering process, as energy is exchanged between the
molecule and the incident light.

From a quantum-mechanical point of view, an incident photon of frequencyνL,
wavelength(c0/νL), and energyhνL, with c0 the speed of light andh Planck’s con-
stant, is instantaneously taken up by the molecule, forming a “virtual state” that is
usually lower in energy than the electronic transitions of the molecule. A new photon
is created and scattered from this virtual state. If the new photon is down-shifted in
frequency, the process is called Stokes-Raman scattering [1]. The resulting photon
will have a reduced energyh(νL−νV). Similarly, a molecule can begin in an excited
vibrational state and proceed, via the virtual state, to the ground state. This gener-
ates an up-shifted “anti-Stokes” Raman scattered photon, with an increased energy
h(νL +νV). The processes of Rayleigh, Stokes Raman, anti-Stokes Raman with un-
shifted, down-shifted, and up-shifted frequencies of the scattered light, respectively,
are illustrated in Fig. 12.1.

Raman scattering, discovered by Raman and Krishnan in 1928 [2], provides a
way to measure molecular composition through inelastic scattering. The frequency
shift of the scattered light is a direct measure of the vibrational frequency (i.e. en-
ergy) of the molecule. Each molecule has its own distinct vibrational frequency or
frequencies. The frequency spectrum of the Raman-scattered light thus provides a
unique fingerprint of the molecule. The Raman spectrum of material with multiple
constituents can thus be used to determine its molecular composition.

A Raman spectrum consists of scattered intensity plotted vs. energy, or frequency,
as shown in Fig. 12.2 for glucose in water. Each peak corresponds to a given Ra-
man shift from the incident light energyhνL. The energy difference between the
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FIGURE 12.1: Energy diagram for Rayleigh, Stokes Raman, and anti-Stokes Ra-
man scattering.

initial and final vibrational states,hνV , the Raman shiftνV , is usually measured in
wavenumbers (cm−1), and is calculated asνV/c. Raman shifts from a given molecule
are always the same, regardless of the excitation frequency (or wavelength). This
provides flexibility in selecting a suitable laser excitation wavelength for a specific
application.

Infrared (IR) absorption, which probes vibrational structure in the energy range
400–4000 cm−1 (25–2.5µm wavelength range), is also indicative of molecular vi-
brations. However, these wavelengths are not readily transmitted by most materi-
als. Raman spectroscopy and IR absorption both probe the vibrational structure of
molecules, and in many cases the same vibrations are observed. IR absorption is sen-
sitive to vibrational frequencies that change the permanent dipole of the molecule.
Raman scattering measures vibrational frequencies that result in a change of polar-
izability.

Near-infrared (NIR) absorption spectroscopy probes the energy range from 4000
to 10000 cm−1 (2.5–1 µm wavelength range), where overtone and combination
bands of molecular vibrations occur. Such transitions are quantum mechanically
“forbidden,” and are significantly weaker, and with broader features, than those ob-
served in IR absorption. However, in contrast to IR absorption, shorter wavelength
NIR light is conveniently transmitted by common optical materials, conferring a
substantial advantage over IR absorption in instrumentation. As mentioned earlier,
Raman shifts are independent of excitation wavelength, and thus there is flexibility
in choosing the wavelength range.
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FIGURE 12.2: A Raman spectrum consists of scattered intensity plotted vs. en-
ergy. This figure shows an aqueous glucose solution as an example.

12.2 Review

This section briefly reviews the literature relevant to quantitative biological Raman
spectroscopy. Raman spectroscopy of biological tissue was initially demonstrated
using NIR Fourier transform Raman spectroscopy [3, 4]. In contrast to the visible
wavelength range, water absorption and background due to laser-induced autofluo-
rescence are both smaller in the NIR, thus enabling deeper penetration depth and
observation of order-of-magnitude weaker Raman peaks. In its early development
stages, Raman spectroscopy was primarily employed as a qualitative tool for chem-
ical identification, with limited ability for quantification. Through the introduction
and improvement of lasers, CCDs and other optical components, quantitative analy-
sis became possible.

In the following, we review three categories of work: semi-quantitative, univari-
ate, and multivariate analyses. Such distinctions are made based on the types of
analysis carried out. For instance, the hallmark of semi-quantitative work is normal-
ization to the overall peak intensity. Although absolute intensity information is lost
in the normalization step, quantitative analysis can be applied afterwards. Univariate
analysis uses one or a few characteristic peaks through measurement of peak heights
or integration of the area under the peaks.

In contrast to univariate analysis, multivariate techniques are often called “full
spectral range” methods. This type of analysis is usually carried out when spectral
overlap exists, and therefore the characteristic peaks of interest are not obvious or are
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“contaminated” by adjacent features not belonging to the substance of interest. As
the analysis becomes more sophisticated and more multivariate in nature, the issue
of model robustness must be considered. We discuss various aspects of this topic in
the subsection 12.3.1.

12.2.1 Semi-quantitative implementation

Raman spectroscopy has been employed in disease diagnosis using morphological
models, with the rationale that characteristic morphological features are representa-
tive disease biomarkers. This approach is based on the unique correspondence be-
tween a particular morphological structure and the underlying chemical substance.
These models are constructed via ordinary least squares (OLS) analysis, which as-
sumes that the (important) spectral components are all precisely known, and that
the observed experimental spectrum can be represented as a linear superposition of
these spectral components, weighted by their concentrations [5]. Hakaet al. [6]
developed a morphological model for breast cancer diagnosis using confocal Raman
microscopy. They analyzed the Raman spectral features of normal, benign and ma-
lignant tissue samples in terms of the relative amount of collagen, fat, keratin, etc.
Van de Pollet al. [7] and Buschmanet al. [8] studied atherosclerosis using a similar
approach. Spectra of individual morphological structures were obtained using confo-
cal Raman microscopy, and then applied to fit tissue spectra collected with an optical
fiber probe. In these studies, spectra of both the model components and those taken
in tissue were normalized to their respective highest peaks, and absolute intensity
information was not retained. However, the chemical composition could be quanti-
fied in terms of the relative proportions of the model components and then correlated
with disease. For example, the relative quantity of collagen to fat was found to be a
relevant breast cancer biomarker.

12.2.2 Univariate implementation

For some applications, characteristic and distinct Raman peaks of the chemical
(molecule) of interest can be observed with little difficulty. Peak height measure-
ment or integration of the area under the peak can be used as a quantitative indicator
of the substance. Casperset al. [9] developed confocal Raman microscopy to per-
form non-invasive determination of the water profile in human skinin vivo. Peterson
et al. [10] reported the acquisition of whole blood Raman spectrain vivousing tissue
modulation. Glucose concentrations were subsequently extracted from the area un-
der particular spectral peaks of the whole blood spectra. A calibration model derived
from one individual was then used to generate meaningful predictions on indepen-
dent data.

12.2.3 Multivariate implementation

In the Raman spectra of more complicated chemical systems, the various underly-
ing components (called “interferents”) generally exhibit substantial spectral overlap.
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Therefore, no distinct Raman peak is available for peak height or area measurement,
and the full spectrum must be used. This is called multivariate analysis. The goal of
multivariate analysis is to obtain a spectrum of numbers,b( j), with j the wavelength
index. Whenb( j) is projected onto an experimental spectrums( j), one obtains accu-
rate prediction of the analyte’s concentration,c [5]. Such spectra are often described
as column vectors, with each dimension corresponding to a given sampling point on
the wavelength axis. In these terms,c is obtained as the scalar product ofb with the
experimental spectrum,b:

c = sTb (12.1)

where lowercase boldface type denotes a column vector, and the superscriptT de-
notes the transpose. Note that Eq. (12.1) assumes linearity,i.e., the observed spec-
trum can be represented as a linear superposition of underlying spectral components.
Multivariate analysis proceeds in two steps. In calibration, one correlates known con-
centrations with spectra to obtainb. The resultingb, sometimes called the regression
vector, is then used to predict the concentration of an unknown sample. Multivariate
calibration is further discussed in detail in subsection 12.3.1, below.

Non-invasive measurement of blood analyte concentrations is a widely pursued
topic, and most studies employ multivariate techniques to extract analyte-specific
concentration information. However, from a data analysis standpoint multivariate
calibration presents more challenges than univariate methods, because of system
complexity and the resulting spectral overlap. Owing to its potential impact on dia-
betes, glucose has been often used as a model analyte.

In vitro measurements of glucose have been performed in filtered blood serum [11,
12], blood serum [13], and whole blood [14]. Rohlederet al. [12] discovered that
measurements from serum are greatly improved by ultrafiltration to remove macro-
molecules that cause intense Raman background and subsequently impair measure-
ment accuracy. Results from whole blood were found to have greater error than those
from filtered or unfiltered serum, but were still within the clinically acceptable range.
Lambertet al. [15] measured human aqueous humor, simulating measurements in
the eye, a convenient target for optical techniques. Our group studied glucose non-
invasively in human subjects using Raman spectroscopy coupled with multivariate
analysis; Enejderet al. [16] accurately measured glucose concentrations in 17 non-
diabetic volunteers following an oral glucose tolerance protocol. Results based on
analysis of spectra from individual and multiple volunteers indicated that the cali-
bration model was based on glucose rather than spurious correlations.

12.3 Quantitative Considerations for Raman Spectroscopy

Traditionally, Raman spectroscopy has been utilized as an analytical tool for chem-
ical identification and fingerprinting, where analysis has been based on observation
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of characteristic Raman peaks. As mentioned in the previous section, many more
challenges are encountered when Raman spectroscopy is used as a quantitative ana-
lytical tool. We discuss the challenges below.

12.3.1 Considerations for multivariate calibration models

As discussed previously, although Raman spectroscopy provides good molecular
specificity, spectral overlap is inevitable with the presence of multiple constituents.
Since the glucose Raman signal is only∼0.3% of the total skin Raman signal [17,
18], and the spectrum is complicated by shot noise and varying fluorescence back-
ground, multivariate calibration is necessary. There are two types of multivariate
techniques, explicit and implicit. In explicit techniques such as OLS [5], theb vector
is calculated from the full set of known spectral components. In implicit techniques,
such as partial least squares (PLS) [19, 20] analysis, theb vector is derived from a
calibration data set composed of samples with known concentrations of the analyte
of interest.

Since multivariate calibration models are often built on an underdetermined data
set, careful assessment of model validity is required. Here we present some consid-
erations for evaluating a calibration model. The reader is referred to the references
for more detailed information about multivariate calibration.

12.3.2 Fundamental and practical limits

In spectroscopy, the amplitude of the Raman spectrum of the analyte of interest
depends on the number of analyte molecules sampled by the incoming light. The ef-
fective path length (in transmission mode) and sampling volume (in reflection mode)
of the light are important parameters in estimating detection limits in turbid me-
dia. Modeling techniques such as diffusion theory [21] and Monte Carlo simulation
[22] can be employed to calculate the fluence distribution inside the sample and the
angular and radial profiles of the transmitted or reflected flux. Simulations with
synthetic data or experiments employing tissue-simulating physical models (called
“phantoms”) can be of great value in determining how close the theoretical limit
can be realized in practice. In these studies, experimental conditions (e.g., signal-
to-noise ratio (SNR), instrumental drifts) and tissue phantom composition (e.g., in-
terferents, concentrations) can be precisely controlled and well characterized in ad-
vance. Demonstrating that the chosen technique and instrument can measure physi-
ological levels of the analyte of interest in phantoms is necessary but not sufficient to
validatein vivo results.In vivocalibration models can only be validated by prospec-
tive studies.

12.3.3 Chance or spurious correlation

Multivariate calibration algorithms are powerful, yet can be misleading if used
without caution. Owing to the nature of the underdetermined data set, minute cor-
relations present in the data set can be misinterpreted by the algorithm as actual
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analyte-specific variations. For example, Arnoldet al. [23] measured the NIR ab-
sorption spectra of tissue phantoms devoid of glucose, and used temporal glucose
concentration profiles published by different research groups to demonstrate that the
calibration model could produce an apparent correlation with glucose even though
none was present. It is important to note that calibration results such as these satisfied
multiple criteria for judging the validity of a calibration model.

Overfitting is another cause for spurious correlations. In multivariate calibration,
a large number of sample spectra can be reduced to fewer factors. In practice, only
a subset of factors is significant in modeling the underlying analyte variations, while
others are more likely to be dominated by noise and measurement errors. Although
an apparently lower calibration error may be obtained by including more factors
in the calibration model, the reduction in error may be fortuitous and the resulting
model may have less predictive capability.

The lesson here is that chance or spurious correlations may be inadvertently incor-
porated in the calibration model even when rigorous validation procedures have been
followed. Additionally, if these chance or spurious correlations exist in prospective
data, even good prediction results can be based on non-analyte-specific effects. In-
corporating prior or additional information into the calibration model has been shown
to provide more immunity to chance correlations [24–27].

12.3.4 Spectral evidence of the analyte of interest

The difficulty in visualizing analyte-specific information in biological spectra makes
it challenging to verify the origin of the spectral information used by the calibration
model and confirm that positive results are actually based on the analyte of interest.
However, some of this information can be obtained by examining theb vector. The
b vectors obtained from spectroscopic data contain spectral information about all the
components of the model. Under ideal, noise-free conditions,b can be explicitly
derived from the model component spectra (via OLS), or implicitly obtained from
the calibration data set. This idealb vector is also termed the net analyte signal [28,
29]. As mentioned above,b is identical (within a scale factor) to the pure component
spectrum of the analyte of interest if no other interferents are present. In other words,
b should “look” progressively more like the glucose spectrum as model complexity
decreases. For example, when spectral overlap is low, as in Raman spectroscopy,
spectral features of glucose can be identified in the experimentally derivedb vec-
tor as supporting evidence that the model is based on glucose rather than spurious
correlations [13, 14, 16].

Although a complete model is virtually never available forin vivo experiments, a
good approximation to the actualb vector is often obtainable from an OLS estimate.
Therefore, it is always useful to compute a theoretically “correct”b vector and com-
pare it to the experimentally derivedb. If the two significantly differ, the discrepancy
should be investigated.
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12.3.5 Minimum detection limit

If all component spectra in a mixture sample are known, the minimum detection
error,∆c, can be calculated via a simple formula derived by Scepanovicet al. [30]
of our laboratory:

∆c =
σ
‖sk‖

OLFk, (12.2)

where the subscriptk designates the constituent analyte to be measured. The first
factor on the right hand side,σ , is the standard deviation of the noise in the measured
spectrum. The second factor,‖sk‖, is the signal strength of the analyte, represented
as the norm of its Raman spectrum. The last factor,OLFk, is termed the “overlap
factor,” and can take on values between 1 and infinity.OLFk indicates the amount
of overlap between the Raman spectrum of the analyte and those of the interferents.
Mathematically,OLFk is the inverse of the correlation coefficient between the analyte
spectrum and the OLS regression vector (bOLS):

OLFk =
1

corr(bOLS,sk)
. (12.3)

bOLS is the portion of the analyte spectrumsk that is orthogonal to all interferents.
When there are no interferents,bOLS is identical to the analyte spectrum and thus
OLFk = 1. When interferents are present,corr(bOLS,sk) is always smaller than one
and thereforeOLFk is always larger than 1. To estimate the overlap factor for glucose
measurements in skin, we built a 10-constituent model, approximating the Raman
spectrum of human skin. Starting with only glucose, the Raman spectra of other
constituents, including, collagen type I, keratin, triolein, actin, collagen type III,
cholesterol, phosphatidylcholine, hemoglobin and water were progressively added,
increasing model complexity. The correlation betweenbOLS and the glucose spec-
trum was reduced from 1 to 0.73, as shown in Fig. 12.3, indicating that the detection
limit indeed becomes worse for more complex chemical systems.

Equation (12.2) provides a practical way to estimate the minimum detection limit,
∆c, based on easily obtainable experimental parameters. Lower fluorescence back-
ground introduces less shot noise and therefore increases the Raman SNR. High
molecular specificity in the Raman spectra leads to less spectral overlap and thus re-
duces the OLF for a specific analyte. A practical estimate of the minimum detectable
glucose concentration in blood for our instrument (section 12.5) is∆c∼ 2 mg/dL.

12.4 Biological Considerations for Raman Spectroscopy

12.4.1 Using near infrared radiation

Raman shifts are independent of excitation wavelength and thus offer flexibility in
choice of wavelength range. NIR excitation provides three advantageous features for
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FIGURE 12.3: Correlation between the OLS regression vector (bOLS) and the glu-
cose spectrum versus model complexity.

studying biological tissue: low-energy optical radiation, deep penetration depth, and
reduced background fluorescence. Excitation wavelengths in the NIR region prevent
hazardous ionization of tissue constituents. The lack of prominent absorbers in the
NIR region enables sampling over sufficient depth, of the order of∼ 1 mm. The
reduced shot noise associated with the low fluorescence background induced by NIR
excitation provides an order of magnitude improvement in sensitivity in extracting
Raman signals. As a result, our Raman studies of biological tissue employ 830 nm as
the excitation wavelength. As shown in Fig. 12.4, this provides Raman spectra over
830-1000 nm, a wavelength range in the “diagnostic window” (deep penetration), in
which silicon-based charge coupled device (CCD) detectors have very high quantum
efficiency.

Figure 12.4 illustrates the absorption spectra of major endogenous tissue absorbers,
water, skin melanin, hemoglobin, and fat. Also shown is the scattering spectrum of
10% Intralipid, a lipid emulsion often used to simulate tissue scattering. The diag-
nostic window is indicated by the rectangle.

12.4.2 Background signal in biological Raman spectra

Raman spectra of biological samples are often accompanied by strong background.
The source of the background is often attributed to fluorescence, particularly when
UV/visible laser excitation is employed. Proteins and lipids present in biological tis-
sue can contribute to the fluorescence background [11]. The autofluorescence of skin
from endogenous fluorophores with UV/visible light excitation is well known and,
in fact, it has been applied to the diagnosis of disease states such as psoriasis [31]
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FIGURE 12.4: Absorption spectra of water, skin melanin, hemoglobin, and
fat. Also shown is the scattering spectrum of 10% Intralipid, a lipid emul-
sion often used to simulate tissue scattering. Data are obtained from http://
omlc.ogi.edu/spectra/index.html.

and diabetes. In these cases, collagen fluorescence changes owing to glycation, the
process in which a single sugar such as glucose binds to a protein or lipid molecule
without the controlling action of an enzyme [32]. Furthermore, our laboratory uti-
lizes the autofluorescence of epithelial tissue components to diagnose dysplasia [33].
The shot noise accompanying this fluorescence background limits the detection ca-
pability.

Time-dependent background variations influence subsequent multivariate analy-
sis. In a human skin study using UV/visible light excitation, Zenget al. [34] de-
scribed the temporal background intensity decay as fluorescence photobleaching.
They fit the intensity decay to a double-exponential function, with the time constants
ascribed to photobleaching rates of different fluorophores in the stratum corneum
and dermis. On the other hand, Jongen and Sterenborg [35] found that even for a
single fluorophore, the turbidity of tissue causes fluorescence decay to deviate from
single-exponential behavior. Hence, double-exponential behavior need not be as-
cribed to two fluorophores. The reasoning for this argument is that the fluorescence
signal from a multi-layered turbid medium is the sum of the contributions from each
layer. Fluorescence from a deeper lying layer appears weaker and will photobleach
at a slower rate because of diminished laser power. Thus, the relative contribution
of fluorescence from deeper layers will appear as smaller signals that decay slower,
whereas the superficial layers will exhibit stronger signals that decay faster. This
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illustrates the strong influence that the optical properties of the sample can have on
the observed behavior of light.

While implicit multivariate calibration techniques can remove the detrimental ef-
fects of the background to some extent, their efficacy is impaired. Thus, it is desirable
to either reduce the background during data collection or subtract it via modeling,
without introducing artifacts. Most background subtraction methods in the literature
are based on polynomial fitting. Since the background has little structure, a slowly-
varying low-order polynomial can characterize it [4, 36–38]. Refs. [36–38] find that
a fifth-order polynomial is the most effective fit to the background.

12.4.3 Heterogeneities in human skin

Uniform analyte distribution is often a good assumption for liquid samples such
as serum or whole blood with continuous stirring. However, for biological tissue,
human skin in particular, heterogeneity is a major feature. Detailed morphological
structure and molecular constituents associated with skin heterogeneity have been
studied using confocal Raman spectroscopy [39]. Skin has two principal layers: epi-
dermis and dermis. The epidermis is the outmost layer, and itself consists of multiple
layers including the stratum corneum as the major component, stratum lucidum, and
stratum granulosum. The major chemical constituent of human epidermis is keratin,
comprising approximately 65% of the stratum corneum. The dermis is also a layered
structure composed mainly of collagen and elastin. Blood capillaries are present in
the dermis, and thus this region is targeted for optical analysis for glucose detection.
However, it has been suggested that the majority of the glucose molecules sampled
by optical techniques arise from the interstitial fluid (ISF), which is primarily found
at the epidermis-dermis interface [40]. The role of skin heterogeneity in non-invasive
measurement of blood analyte concentrations is an important factor that has not yet
been fully studied.

12.5 Instrumentation

As discussed previously, background fluorescence from biological tissue impedes
observation of Raman signals with UV/visible excitation wavelengths. To overcome
this limitation, the use of NIR excitation was introduced, initially using Fourier-
transform spectrometers [3]. With the advent of high quantum efficiency CCD de-
tectors and holographic diffractive optical elements, our group and others have led
the way in switching to CCD-based dispersive spectrometers [4, 10, 11, 13-15]. The
advantages of dispersive NIR Raman spectroscopy are that compact solid-state diode
lasers can be used for excitation, the imaging spectrograph can bef -number matched
with optical fibers for greater throughput, and cooled CCD detectors offer shot-noise-
limited detection. As a tutorial for the selection of building blocks for a Raman in-
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strument with high collection efficiency, we present a summary of the key design
considerations.

12.5.1 Excitation light source

Laser excitation at one of two wavelengths, 785 and 830 nm, is most common.
The tradeoff is that excitation at lower wavelengths has a higher efficiency of gen-
erating Raman scattering but also generates more intense background fluorescence.
The current trend is towards the use of external cavity laser diodes because they are
compact and of relatively low cost. Other researchers use argon-ion laser pumped
titanium-sapphire lasers. The titanium-sapphire laser provides higher power output
with broader wavelength tunability, but it is bulkier and much more expensive than
diode lasers.

Narrow-band excitation must be used to prevent broadening of the Raman bands.
Further, the wings of the laser emission (amplified spontaneous emission) can extend
beyond the cutoff wavelength of the notch filter used to suppress the elastically scat-
tered light, and can obscure low wavenumber Raman bands. This problem is most
severe with high power diode lasers, and a holographic bandpass or interference laser
line filter with attenuation greater than 6OD is usually required. Lastly, for quanti-
tative measurements a photodiode is often needed to monitor the laser intensity to
correct for power variations.

12.5.2 Light delivery, collection, and transport

The filtered laser light can be delivered to the sample either via free-space trans-
mission or through an optical fiber. In free-space embodiments, beam shaping is
usually performed to correct for astigmatism and other laser light artifacts. The inci-
dent light at the sample can be either focused or collimated, depending on collection
considerations. For biological tissue, the total power per unit area delivered to the
tissue must be limited for safety, and thus spot size on the tissue is an oft-reported
parameter.

Raman probes constructed from fused silica optical fibers have gained much at-
tention recently. Typically, low-OH content fibers are utilized to reduce the fiber
fluorescence. The probe design also includes filters at the distal end to suppress the
fused silica Raman signal from the excitation fiber and prevent the elastically scat-
tered light entering the collection fibers [41]. Commercial probes are now available,
and they offer ruggedness and easy access to samples with geometrical or other con-
straints.

As Raman scattering is a weak process, high collection efficiency is required. Spe-
cialized optics such as Cassegrain microscope objectives and non-imaging paraboloidal
mirrors have been employed to increase both the collection spot diameter and the ef-
fective numerical aperture of the optical system [40]. The majority of light that exits
the air-sample interface is elastically scattered at the laser wavelength. This light
must be properly attenuated or it will saturate the CCD detector. Holographic or
interference notch filters are extensively employed for this purpose, and can attenu-
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ate the elastically scattered light to greater than 6OD, while passing the Raman light
with greater than 90% efficiency. However, notch filters are very sensitive to the
incident angle of the light, and thus provide less attenuation for off-axis light. In
some instances the diameter of the notch filter is one of the determining factors of
the throughput of an instrument.

Specular reflection, light that is elastically scattered without penetrating the tissue,
is also undesirable. Strategies such as oblique incidence [42], 90-degree collection
geometry [11], and bringing in excitation light via a hole in the collection mirror have
all been employed to reduce its effect [27]. After filtering out most of the elastically
scattered light, the Raman scattered light must be transported to the spectrograph
with minimum loss. To match the shape of the entrance slit of a spectrograph, the
circular shape of the collected light can be relayed by an optical fiber bundle with the
receiving end arranged in a round shape and the exiting end arranged in a line [14].

12.5.3 Spectrograph and detector

In dispersive spectrographs for Raman spectroscopy, transmission holographic
gratings are often used because of their compactness and high dispersion. Holo-
graphic gratings can be custom-blazed for specific excitation wavelengths and pro-
vide acceptable efficiency. In addition, liquid nitrogen cooled and, more recently,
thermoelectric cooled CCD detectors offer high sensitivity and shot-noise-limited
detection in the near infrared wavelength range up to∼1 µm. These detectors can
be controlled using programs such as Labview to facilitate experimental studies.

To increase light throughput in Raman systems, the CCD chip size can be in-
creased vertically to match the spectrograph slit height. However, large format CCD
detectors show pronounced slit image curvature that must be corrected for in pre-
processing (described in subsection 12.6.1).

As an example of these design considerations, Fig. 12.5 shows a schematic of
the high-throughput Raman instrument currently used in our laboratory. We opted
for free space delivery of the excitation light through a small hole in an off-axis
half-paraboloidal mirror. Backscattered Raman light is collimated by the mirror and
passed through a 2.5-inch-diameter holographic notch filter to reduce elastically scat-
tered light. The Raman light is focused onto a shape-transforming fiber bundle, with
the exit end serving as the entrance slit of an f/1.4 spectrometer. The pre-filtering
stage of the spectrometer was removed to reduce fluorescence and losses from multi-
ple optical elements. The back-thinned, deep depletion, liquid nitrogen-cooled CCD,
1300×1340 pixels, is height-matched to the fiber bundle slit. This instrument was
specifically designed for high sensitivity measurements in turbid media.
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FIGURE 12.5: Schematic of a free space Raman instrument for non-invasive
glucose measurements used at the MIT Spectroscopy Laboratory. The white light
source is for diffuse reflectance measurements and is not always present.

12.6 Data Pre-Processing

After data collection, various pre-processing steps are undertaken to improve data
quality. The pre-processing steps chosen can lead to different calibration results.
Therefore, it is important to carefully consider the exact procedures used. The major
pre-processing steps are described in the following.

12.6.1 Image curvature correction

Increasing the usable detector area is an effective way to improve light throughput
in Raman spectroscopy employing a multi-channel dispersive spectrograph. How-
ever, owing to out-of-plane diffraction, the entrance slit image appears curved [43].
Direct vertical binning of detector pixels without correcting the curvature results in
degraded spectral resolution.

Various hardware approaches, such as employing curved slits [42, 43] or convex
spherical gratings, have been implemented. In the curved slit approach, fiber bundles
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are employed as shape transformers to increase Raman light collection efficiency. At
the entrance end the fibers are arranged in a round shape to accommodate the focal
spot, and at the exit end in a curved line, with curvature opposite to that introduced
by the remaining optical system.This exit arrangement serves as the entrance slit of
the spectrograph and provides immediate first order correction of the curved image,
as described below. However, for quantitative Raman spectroscopy, with substantial
change of the image curvature across the wavelength range of interest (∼ 150 nm)
and narrow spectral features, this first order correction is not always satisfactory.

As an alternative to the hardware approach, software can be employed to correct
the curved image, with potentially better accuracy and flexibility for system modifi-
cation. In past research, we developed a software method using a highly Raman-
active reference material to provide a sharp image on the CCD [44]. Using the
curvature of the slit image at the center wavelength as a guide, we determine by
how many pixels in the horizontal direction each off-center CCD row needs to be
shifted in order to generate a linear vertical image. This pixel shift method, as well
as the curved-fiber-bundle hardware approach, ignores the fact that the slit image
curvature is wavelength dependent. The resulting spectral quality of the pixel shift
method is thus equivalent to the curved-fiber-bundle hardware approach [43]. This
issue becomes more important when large CCD chips and high-NA spectrographs
are employed for increasing the throughput of the Raman scattered light.

Recently, a software approach using multiple polystyrene absorption bands was
developed for infrared spectroscopy [16]. In this section we present a similar method
that we developed concurrently, which calibrates on multiple Raman peaks to gener-
ate a curvature map.

This curvature mapping method shows significant improvement over first-order
correction schemes. The curvature mapping method requires an initial calibration
step. In this step, a full-frame image is taken with a reference material that has
prominent peaks across the spectral range of interest, for example, acetaminophen
(Tylenol) powder. We chose nine prominent peaks across the wavelength range of
interest, indicated by the arrows in Fig. 12.6.

The calibration algorithm generates a map of the amount of shift for each CCD
pixel and a scale factor to maintain signal conservation in each CCD row. Once the
map and the scale factor are generated, usually when the system is first set up, the
correction algorithm can be applied to future measurements.

Figure 12.7 shows that significant improvement is obtained from the pixel shift
method to the curvature mapping method, especially toward either side of the CCD
(compare Figs. 7(c) and 7(e)). The overall linewidth reduction in 14 prominent peaks
is 7% (FWHM). Such improvement is significant, considering that the equivalent slit
width is∼360 µm. If a narrower slit is employed for better spectral resolution, the
overall linewidth reduction is even more significant. Note that the images were taken
with 5-pixel CCD hardware vertical binning to reduce the amount of data, since the
curvature is barely noticeable within such a short range. The error introduced by the
hardware binning is much less than 1 pixel, and thus negligible.
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FIGURE 12.6: Raman spectrum of acetaminophen powder, used as the reference
material in the calibration step. Nine prominent peaks used as separation boundaries
are indicated by arrows.

FIGURE 12.7: CCD image of acetaminophen powder. Images were created with
5-pixel hardware binning. (a) Raw image; (b) after applying pixel shift method; (c)
zoom-in of the box in (b); (d) after applying curvature mapping method; (e) zoom-in
of the box in (d).

12.6.2 Spectral range selection

Multivariate calibration methods attempt to find spectral components based on
variance. The presence of a spectral region with large non-analyte-specific varia-
tions may bias the algorithm and cause smaller analyte-specific variance to be over-
looked. Therefore, the ‘fingerprint’ region from approximately 300-1700 cm−1 is
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often chosen for analysis.

12.6.3 Cosmic ray removal

Cosmic rays traverse the CCD array at random times with arbitrary intensities, re-
sulting in spikes at individual pixels. When the array is summed and processed, sharp
spectral features of arbitrary intensities may appear in the Raman spectra. These ar-
tifacts are typically removed before multivariate calibration.

One approach is based on the assumption that the spectrum does not change its
intensity from frame to frame other than due to noise and cosmic rays. Therefore, by
comparing multiple neighboring frames, a statistical algorithm can be used to iden-
tify cosmic rays. Another solution compares adjacent pixels in the same spectrum
and detects abrupt jumps in intensity from pixel to pixel. Once a cosmic ray con-
taminated pixel is identified, its value can be replaced by the average of neighboring
pixels.

12.6.4 Background subtraction

As mentioned in section 12.4, the background signal in Raman spectra is a lim-
iting factor in determining the detection limit. Background subtraction techniques
only approximate the shape of the background, and thus place a limit on extract-
ing information. The contrasting approach is to not subtract that background, and
instead rely on multivariate calibration algorithms to process both the Raman sig-
nals and the background. However, for qualitative analysis, background-subtracted
spectra provide better interpretation of the underlying constituents.

12.6.5 Random noise rejection and suppression

Photon shot-noise-limited performance can be achieved using a liquid nitrogen
cooled CCD camera. When a detector is shot noise limited, the noise can be esti-
mated as the square root of the number of photoelectrons collected in the integration
time window. The most effective way to increase the SNR under shot-noise-limited
conditions is to increase the integration time of the CCD or the throughput of the in-
strument. However, extending the integration beyond a certain time scale offers less
additional benefit, as other errors begin to dominate performance [40]. Once the data
are collected, signal processing is the only way to further enhance the SNR. Pixel
binning along the wavelength axis is one method of increasing the SNR, and results
indicate that there is an optimal number of binned pixels for optimizing SNR [40].
However, the drawback to this method is degradation in spectral resolution. More
commonly employed are Savitzky-Golay smoothing algorithms, which also improve
the SNR while better retains spectral resolution.
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12.6.6 White light correction and wavelength calibration

When spectra collected from different instruments or on different days are to be
compared, white light correction and wavelength calibration are required. White
light correction is performed by dividing the Raman spectra by the spectrum from a
calibrated light source, for example a calibrated tungsten-halogen lamp measured
under identical conditions. The combined spectral response of the optical com-
ponents, the diffraction grating, and the CCD camera can be effectively removed,
thus revealing more of the underlying Raman spectral features. Wavelength cali-
bration is performed to transform the pixel-based axis into a wavelength-based (or
wavenumber-based) axis, enabling comparison of Raman features across instruments
and time.

12.6.7 Wavelength selection

Although in most experiments Raman spectra are acquired over a continuous
wavelength range, analyte-specific information can be distributed non-uniformly across
this range. In addition, the overlap factor can change if different wavelengths are
chosen for multivariate calibration. Further, because the background is usually non-
uniform in wavelength, the shot noise is usually not constant across the entire spectral
range. These factors, considered in combination, suggest that there may be advan-
tages when particular wavelength channels (e.g., CCD pixels) are excluded from the
spectra. The theoretical basis of wavelength selection and algorithms to perform
such selection have been studied [45]. In our laboratory, wavelength selection has
not been implemented, but we will consider it in future studies.

12.7 In Vitro and In Vivo Studies

In this section, we review the application of quantitative Raman spectroscopy to
measure blood analytes,e.g., in particular the glucose studies performed in our lab-
oratory.In vitro studies have been performed using unprocessed human blood serum
and human whole blood.In vivostudies have been performed with human volunteers
under glucose tolerance test protocols.

12.7.1 Model validation protocol and summary statistics

In our studies, leave-one-out cross validation has been employed as a way to
use small data sets efficiently. Validation of the calibration model is crucial before
prospective application. Two types of validation schemes can be employed, internal
and external. Internal validation, or cross validation, is used when the number of
calibration samples is limited. In cross validation, a small subset of calibration data
is withheld in the model building step, from which theb vector is obtained. The
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model is then applied to the withheld data. A different subset of calibration data is
next withheld and the model rebuilt, and again applied to the withheld data. This
process is repeated until all the combinations have been studied.

In determining the optimal model via cross validation, the root mean square error
of cross validation (RMSECV) is calculated. RMSECV is defined as the square
root of the sum of the squares of the differences between extracted and reference
concentrations. The RMSECV is calculated for a particular choice of the number
of model parameters,e.g., the number of factors in PLS. An iterative algorithm is
often employed to vary the number of parameters and recalculate the RMSECV. The
statistically significant minimum RMSECV and the corresponding number of model
parameters are then chosen for determining the optimal calibration model.

Various strategies can be employed for grouping spectra for calibration and vali-
dation. For example, a single sample can be withheld in a “leave-one-out” scheme,
and the calibration and validation process repeated as many times as the number of
samples in the calibration data set. In general, “leave-n-out” cross validation can be
implemented with n random samples chosen from a pool of calibration data.

When the calibration data set is sufficiently large, external validation,i.e., predic-
tive testing, can be employed. As opposed to internal validation, external validation
tests the calibration model and optimizes the number of model parameters on data
that never influences the model, and therefore provides a more objective measure
than internal validation.

Theb vector obtained by the validation procedure can be employed prospectively
to predict concentrations of the analyte of interest in independent data. Similar to
the calculation of RMSECV, root mean square error of prediction (RMSEP) for an
independent data set is defined as the square root of the sum of the squares of the
differences between predicted and reference concentrations. For feasibility studies,
RMSECV is a good indicator of performance as long as the number of calibration
samples is statistically sufficient. RMSEP, on the other hand, provides the objective
metric by which a technology ultimately must be evaluated.

12.7.2 Blood serum

Our laboratory began investigating non-invasive blood analysis using Raman spec-
troscopy in the mid 1990’s [46–48]. The first biological sample study was conducted
on serum and whole blood samples from 69 patients over a seven-week period [13].
No sample processing or selection criteria were employed, with the exception of lo-
cating a few samples with extreme glucose concentrations to represent the range of
diabetes patients’ glucose levels. An 830 nm diode laser was employed for excitation
and a microscope objective for light collection. The laser power at the sample was
∼ 250 mW, and the integration time for each spectrum was equivalent to 300 sec-
onds. The glucose measurement results in serum were quite encouraging, with PLS
calibration providing an RMSECV of 1.5 mM. However, the glucose measurement
results in whole blood result were not satisfactory because of reduced signals from
the highly turbid samples. Glucose spectral features were identified in both the PLS
weighting vector and theb vector, supporting that the calibration model was based
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on glucose.

12.7.3 Whole blood

The main difficulty in measuring analyte concentrations in whole blood as com-
pared to serum was attributed to the much higher absorption and scattering of whole
blood because of the presence of hemoglobin and red blood cells, respectively. The
combined effect resulted in a factor of four decrease in collected Raman signal size.

A subsequent whole blood study in our laboratory by Enejderet al. [14] confirmed
this hypothesis. A four-fold increase in Raman signal collection size was achieved
by employing a paraboloidal mirror and a shape-transforming fiber bundle for better
collection efficiency, as depicted in Fig. 12.5. Accurate measurement of multiple
analytes was then demonstrated in 31 whole blood samples with laser intensity and
integration time similar to the previous serum study [13]. PLS leave-one-out cross
validation was performed, and an RMSECV of 1.2 mM was obtained. The ratio of
the number of PLS factors to that of the samples (∼1:3) raised the concern of over-
fitting. However, glucose spectral features were identified in the regression vector,
providing confidence that the model was based on glucose.

12.7.4 Human study

Enejderet al. [16] conducted a transcutaneous study on 17 non-diabetic volun-
teers using a version of the instrument depicted in Fig. 12.5 without the white light
source. The objective of this study was to provide an initial evaluation of the abil-
ity of Raman spectroscopy to measure glucose non-invasively, with the focus on
determining its capability in a range of subjects. Spectra were collected from the
forearms of human volunteers in conjunction with an oral glucose tolerance test pro-
tocol, involving overnight fasting followed by the intake of a high-glucose contain-
ing fluid, after which the glucose levels are elevated to more than twice that found
under fasting conditions. Periodic reference glucose concentrations were obtained
from finger-stick blood samples and subsequently analyzed by a Hemocue portable
glucose meter. The glucose concentrations for all volunteers ranged from 3.8 to
12.4 mM (∼68–223 mg/dL). Raman spectra over the spectral range 1545–355 cm−1

were selected for data analysis. An average of 27 (461/17) spectra were obtained for
each individual. Each spectrum was obtained with excitation power∼300 mW in a
1 mm spot diameter on the forearm, and integration time equivalent to 3 minutes.

Spectra from each volunteer were analyzed using PLS with leave-one-out cross
validation, with 8 factors retained for development of the regression vector. PLS with
leave-one-out cross validation was first performed on each individual, a mean abso-
lute error (MAE) of 7.8% (RMSECV∼ 0.7 mM) and anR2 of 0.83 were obtained.
When the data from 9 volunteers were combined, the MAE was 12.8% withR2∼ 0.7,
while combining all 17 volunteers gave MAE∼ 16.9% (RMSECV∼ 1.5 mM). In
individual calibrations, the adequacy of the ratio of the number of PLS factors and
that of the samples was a concern. However, in the combined data set, the grouping
schemes involving 9 (244 spectra) and 17 (461 spectra) volunteers utilized 17 and
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21 factors, respectively, which is acceptable [16]. Another encouraging piece of ev-
idence was that multiple glucose spectral features were identified in the regression
vectors, indicating that the calibration was at least partially based on glucose.

Since this was a feasibility study, the protocol did not include measurements on
the volunteers over a number of days, and thus independent data was not obtained.
Further, oral glucose tolerance test protocols are susceptible to correlation with the
fluorescence background decay, which may enhance the apparent prediction results.
Therefore, more studies, preferably involving glucose clamping performed on differ-
ent days, are required.

12.8 Toward Prospective Application

The results from thein vitro andin vivo studies reviewed above are encouraging.
They demonstrate the feasibility of building glucose-specificin vivomultivariate cal-
ibration models based on Raman spectroscopy. To bring this technique to fruition,
prospective application of a calibration algorithm on independent data with clini-
cally acceptable prediction results needs to be demonstrated. This requires advances
in extracting glucose information without spurious correlations, and correcting for
variations in subject tissue morphology and color. We have developed two new tools
to address these issues. The first is a novel multivariate calibration technique with
higher analyte specificity than present techniques, and is more robust against interfer-
ent co-variations and chance correlations. This technique, constrained regularization,
is described in subsection 12.8.1. In addition, we have developed a new correction
method to compensate for turbidity-induced sampling volume variations across sites
and individuals. This method, intrinsic Raman spectroscopy, is discussed in subsec-
tion 12.8.2. Other considerations for successfulin vivo studies, such as reference
concentration accuracy and optimal collection site determination, will be discussed
in the context of future directions.

12.8.1 Analyte-specific information extraction using hybrid calibration
methods

Multivariate calibration methods are in general not analyte-specific. Calibration
models are built based on correlations in the data, which may be due to the analyte or
to systematic or spurious effects. One way to effectively boost the model specificity
is by incorporating additional analyte-specific information, such as its pure spec-
trum. Hybrid methods merge additional spectral information with calibration data in
an implicit calibration scheme. In the following, we present two of these methods
developed in our laboratory.
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12.8.2 Hybrid linear analysis (HLA)

Hybrid linear analysis was developed by Bergeret al. [24]. In this method, ana-
lyte spectral contributions are first removed from the sample spectra by subtracting
the pure spectrum according to reference concentration measurements. The resulting
spectra are then analyzed by principal component analysis (PCA), and the significant
principal components extracted. These principal components are then used as basis
spectra to orthogonalize the pure analyte spectrum. This orthogonalization results in
ab vector that is essentially the portion of the pure analyte spectrum that is orthogo-
nal to all interferent spectra, akin to the net analyte signal.

HLA was implemented experimentallyin vitro with a 3-analyte model composed
of glucose, creatinine, and lactate. Significant improvement over PLS was obtained
owing to incorporating the pure glucose spectrum in the model development. How-
ever, because HLA relies on subtracting the analyte spectrum from the calibration
data, it is very sensitive to the accuracy of the spectral shape and intensity. For turbid
samples with multiple analytes in which absorption and scattering can alter the ana-
lyte spectral features, we find that the performance of HLA is impaired. Motivated by
advancing transcutaneous measurement of blood analytesin vivo, constrained regu-
larization was developed as a more robust method against inaccuracies in the pure
analyte spectra.

12.8.3 Constrained regularization (CR)

To understand constrained regularization, multivariate calibration can be viewed
as an inverse problem. Given the inverse mixture model for a single analyte:

c = STb (12.4)

where capital boldface type denotes a matrix. The goal is to invert Eq. (12.4) and
obtain a solution forb. Factor-based methods such as principal component regres-
sion (PCR) and PLS summarize the calibration data,[S,c], using a few principal
components or loading vectors. In contrast, CR seeks a balance between model ap-
proximation error and noise propagation error by minimizing the cost function,Φ
[49]:

Φ(Λ,b0) =
∥∥STb−c

∥∥2 +Λ‖b−b0‖2 (12.5)

with ‖e‖ the Euclidean norm (i.e., magnitude) ofe, andb0 a spectral constraint that
introduces prior information aboutb. The first term on the right-hand side of Eq.
(12.5) is the model approximation error, and the second term is the norm of the
difference between the solution and the constraint, which controls the smoothness of
the solution and its deviation from the constraint. Ifb0 is zero, the solution is the
common regularized solution. ForΛ = 0 the least squares solution is then obtained.
In the other limit, in whichΛ goes to infinity, the solution is simplyb = b0.

A reasonable choice forb0 is the spectrum of the analyte of interest, because that
is the solution forb in the absence of noise and interferents. Another choice is the
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net analyte signal [28] calculated using all of the known pure analyte spectra. Such
flexibility in the selection ofb0 is possible because of the manner in which the con-
straint is incorporated into the calibration algorithm. For CR, the spectral constraint
is included in a nonlinear fashion through minimizingΦ, and is thus termed a ”soft”
constraint. On the other hand, there is little flexibility for methods such as HLA, in
which the spectral constraint is algebraically subtracted from each sample spectrum
before performing PCA. We term this type of constraint a ”hard” constraint.

Numerical simulations andin vitro experiments indicate that CR gives lower RM-
SEP than methods without prior information, such as PLS, and that it is less affected
by analyte co-variations. We further demonstrated that CR is more robust than HLA
when there are inaccuracies in the applied constraint, as often occurs in complex or
turbid samples such as biological tissue [27]. The simulation and experimental re-
sults for RMSEP are summarized in Table 12.1, where all values were normalized
to the PLS values. Glucose and creatinine were used as the analytes of interest with
urea the major interferent. India ink and intralipid were used to provide turbidity
with absorption and scattering levels similar to those of biological tissue.

TABLE 12.1: Comparison of RMSEP values for PLS, HLA, and CR.
Glucose (G) and creatinine (C) are the analytes of interest. All RMSEP values
are normalized to those of PLS. Note that all values of turbidity span the
physiologically relevant range

PLS HLA CR
G & C G C G C

Simulation 1 0.64 0.53 0.8 0.59
Clear samples 1 0.73 0.95 0.73 0.89
Turbid samples 1 1.15 1.12 0.8 0.88

An important lesson learned from this study is that there is a trade-off between
maximizing prior information utilization, and robustness concerning the accuracy
of this information. Multivariate calibration methods range from explicit methods
with maximum use of prior information (e.g., OLS, least robust when the calibra-
tion model is inaccurate), hybrid methods with an inflexible constraint (e.g., HLA),
hybrid methods with a flexible constraint (e.g., CR), and implicit methods with no
prior information (e.g., PLS, most robust, but prone to be misled by spurious corre-
lations). We believe that CR achieves the optimal balance between these ideals in
practical situations.
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FIGURE 12.8: Turbidity-induced sampling volume variations simulated by
the Monte Carlo method. Steady-state fluence rate owing to excitation for three
turbidity-induced sampling volumes: (left) large; (middle) medium; (right) small
sampling volume.

12.8.4 Sampling volume correction using intrinsic Raman spectroscopy

Sample variability is a critical issue in prospective application of a calibration
model. For optical technologies, variations in tissue optical properties, particularly
absorption (µa) and scattering (µs) coefficients, can distort the measured spectra.
Figure 12.8 shows the results from Monte Carlo simulations, demonstrating that the
effective sampling volume strongly depends on the optical properties of the medium.
Note that the three values of turbidity shown are within the physiologically relevant
range. If these turbidity-induced sampling volume variations are not corrected for,
large errors will be introduced into the subsequent multivariate analysis.

This section provides an overview of techniques to correct turbidity-induced spec-
tral and intensity distortions in fluorescence and Raman spectroscopy. Photon migra-
tion theory is employed to model diffuse reflectance, fluorescence and Raman scat-
tering arising from turbid biological samples. Monte Carlo simulations are employed
as an effective and statistically accurate tool to numerically model light propagation
in turbid media. Using the photon migration model and Monte Carlo simulations,
preliminary results of the use of intrinsic Raman spectroscopy to correct the effects
of turbidity are presented. Details of these results will be published separately [50].

12.8.5 Corrections based on photon migration theory

Radiative transfer theory [21] provides an intensity based picture of light propa-
gation in turbid media. However, the analytical solution to this integro-differential
equation can be found only for very special conditions and approximations. The most
extensively studied approximation is diffusion theory, which is used to model pho-
tons that undergo multiple scattering events [21]. Another very useful approxima-
tion, developed in our laboratory, is photon migration theory [51, 52]. This method
employs probabilistic concepts to describe the scattering of light, and sets up a frame-
work for an analytical expression relating the measured fluorescence to the intrinsic
fluorescence, defined as the fluorescence as measured from a optically-thin slice of
tissue free of the effects of scattering and absorption. This expression has been em-
ployed to recover turbidity-free fluorescence spectra from various types of tissue.
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FIGURE 12.9: Ramobsµ ′s versusRd for samples of two different sizes (left) and
for two different elastic scattering anisotropies (right). Note that all values of turbid-
ity span the physiologically relevant range.

The correction facilitates interpretation of underlying fluorophores and consequently
improves the accuracy of disease diagnosis [33, 53].

The same general principle should hold true for Raman spectroscopy, as well. Un-
like fluorescence spectroscopy, spectral lineshape distortions caused by prominent
absorbers is less of an issue in the NIR wavelength range. However, for quantita-
tive analysis, the turbidity-induced sampling volume variations become significant.
Monte Carlo simulations and experimental results show that the intrinsic Raman sig-
nal for arbitrary samples and collection geometries can be described by:

Ramint = µ ′s
Ramobs

f (Rd)
(12.6)

with µ ′s = µs(1−g) andg the tissue anisotropy, andf (Rd) the calibration factor with
Rd the diffuse reflectance measured at the Raman wavelength. Fit parameters for
f (Rd) in Eq. (12.6) can be experimentally calibrated, and employed to obtain the
intrinsic Raman signal in prospective spectra [54].

12.8.6 Intrinsic Raman spectroscopy (IRS)

Figure 12.9 (left) plots the productRamobsµ ′s versusRd for two sample sizes,
using the results from Monte Carlo simulations. A fit to this curve approximates
the product of the intrinsic Raman signal andf (Rd), and can be used to correct for
sampling volume variations. We find that the curvature off (Rd) depends on the
size of the sample. We also find that the curvature depends ong, as shown in Fig.
12.9 (right). Note that the higher spread for the samples of smaller size and larger
anisotropy results from less returned photons, and thus a lower SNR.

IRS can be implemented either with numerical simulations or tissue phantoms. In
either case, the implementation is done in two steps: calibration and application. In
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the calibration step, a set of samples with a wide range of turbidity values (within the
physiological range) is studied, with a Raman scatterer of the same concentration
inserted in each sample as a probe. Fig. 12.9 (left) can then be generated with fit
parameters to obtain the functional form off (Rd). This function can then be used in
the application step, in which the concentrations of the analytes are varied, to extract
the intrinsic Raman signal from the measured Raman signal.

Note that to apply IRS one needs to knowµ ′s for the samples. Extraction of optical
properties has been studied by many researchers [55–58]. The majority of methods
are based on diffusion theory or its variants. Our laboratory extracts optical proper-
ties from biological tissue routinely in other wavelength ranges, and a similar method
can be employed for this purpose [56].

Intrinsic Raman spectroscopy is a novel technique. We look forward to incorpo-
rating it in our futurein vivostudies. In addition, since CR and IRS both address the
issues associated with non-analyte-specific correlations, yet from entirely different
aspects, they can be applied in tandem. It will be interesting to study the resulting
synergistic effects.

12.8.7 Other considerations and future directions

CR and IRS are two exciting topics for continued study. As mentioned earlier,
there are several other areas also worthy of study. These are briefly discussed below.

12.8.7.1 Data quality

Reference concentrations greatly affect the performance of the calibration algo-
rithm. In spectroscopic techniques such as Raman spectroscopy, a large portion of
the collected glucose signal likely originates from the glucose molecules in the inter-
stitial fluid (ISF). In addition, it is well known that the ISF glucose concentration in
humans lags the plasma glucose concentration by 5 to 30 minutes [59]. As a result,
use of plasma glucose as the reference concentration may introduce errors. Methods
for extracting interstitial fluid for glucose reference measurements are being devel-
oped and should be incorporated in future studies [60, 61].

As discussed in subsection 12.4.2, the background and issues associated with it
impose a limit on the SNR, and can influence multivariate calibration. Although
the present background subtraction techniques address this issue, there is room for
improvement. Thus, methods to reduce the background signal at its origin should be
explored. One approach to separate fluorescence from Raman scattering is to study
the spectrum at two closely-spaced excitation wavelengths and take the difference
between them. It will be interesting to see if this technique can provide insight into
the origin of the background signal and its variation.

12.8.7.2 Tissue morphology and skin heterogeneity

Sampling depth and sample positioning are critical for optimal collection of glucose-
specific Raman scattered light. These may play a role in calibration transfer. In
experiments, the effective sampling depth can be estimated from study of extracted
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optical properties, and therefore the correct distance between the sample and the
collection optics can be determined for each measurement site. A study of mor-
phological and layered structures at the sampling site with confocal microscopy and
a properly designed human-instrument interface could shed light on the sampling
depth and positioning. By knowing the exact sampling volume and its coverage of
various skin morphological structures, it may be possible to estimate how much of
the glucose-containing region (dermis in the two-layer model) is sampled.

12.9 Conclusion

Quantitative biological Raman spectroscopy is a powerful technique for non-invasive
tissue analysis and analyte concentration measurements. From its early development
with in vitro studies,in vivo studies have been realized with the aid of more ad-
vanced instrumentation and calibration algorithms. Thein vivo studies performed
to date have demonstrated the feasibility of obtaining glucose-specific multivariate
calibration models. The next step in advancing the technology is to conduct prospec-
tive studies. Some of the issues to be addressed are enhancing analyte specificity,
correcting for diversity across individuals, and issues relating to improved reference
concentrations, and study of the role of tissue morphology and skin heterogeneity.

This chapter has reviewed recent developments in the first two categories by intro-
ducing constrained regularization and intrinsic Raman spectroscopy. With the aid of
additional analyte spectral information, CR effectively improves analyte specificity.
IRS, on the other hand, greatly reduces turbidity-induced sampling volume varia-
tions, one of the most challenging factors in multivariate calibration. These tech-
niques will play a crucial role in prospective studies involving multiple sites/subjects/-
days. We are currently planning a multi-subject and multiple-dayin vivo study, first
on dogs and then on human subjects. We believe that these new developments will
enable us to demonstrate that quantitative Raman spectroscopy can accurately mea-
sure blood analyte concentrations prospectively.
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