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Abstract: We present a novel technique to generate microbubbles photothermally by 
continuous-wave laser irradiation of nanoporous gold disk (NPGD) array covered 
microfluidic channels. When a single laser spot is focused on the NPGDs, a microbubble can 
be generated with controlled size by adjusting the laser power. The dynamics of both bubble 
growth and shrinkage are studied. Using computer-generated holography on a spatial light 
modulator (SLM), simultaneous generation of multiple microbubbles at arbitrary locations 
with independent control is demonstrated. A potential application of flow manipulation is 
demonstrated using a microfluidic X-shaped junction. The advantages of this technique are 
flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, 
high controllability over bubble size, and relatively lower power consumption. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

In microfluidic devices, microbubbles have been widely utilized as micro-pumps [1], micro-
mixers [2], micro-robots [3] and surface cleaners [4,5]. Among various microbubble 
generation techniques, hydrodynamic method is one of the most commonly used, relying on 
shear force between liquid and gas flows in T-junction [6], flow-focusing [7] or co-focusing 
junction [8] microchannels. High-throughput production of bubbles with well-controlled size 
and frequency has been achieved [9,10]: generation speed of 106 bubbles per second, diameter 
ranging from 10 to 500 μm, and a standard deviation of bubble volume less than 2%. 
However, the location of bubble generation is limited to the position of junctions, and the 
generated bubbles cannot be fixed but flushed away with the continuous flow, making it not 
suitable for flow manipulation applications. 

High heat-flux pulse heating is another technique for bubble generation, where the bubble 
grows on the surface of resistive heaters due to the localized nucleate boiling effect [11,12]. It 
has been employed in thermal-bubble ink-jet printers. Although this technique features low 
cost and easy integration with microfluidic systems, the bubble generation is limited to the 
position of resistive heaters, which requires electrical connections. Additionally, the 
generated bubbles provide short lifetime and collapse immediately after current pulses. 

Another technique for bubble generation utilizes lasers to enable localized photothermal 
heating. In contrast to other techniques, there is great flexibility in the location of bubble 
generation by repositioning the laser spot. Additionally, without the need for resistive heaters 
and interconnects embedded in the microchannel, lithography is not required. Low-cost 
device fabrication techniques such as soft lithography can be employed. However, light-based 
generation techniques have been mostly limited to high power laser pulses and single bubble 
generation. Cavitation bubbles have been generated by a highly focused laser spot inside a 
microscale gap, causing the liquid to vaporize rapidly [13]. Such bubbles have been 
demonstrated for fluid actuation [1,2,14], cell surgery [15], cell lysis [16], and cell membrane 
poration [17]. Dyes are usually utilized for cavitation bubble generation in order to increase 
the efficiency of light absorption, and the generated bubbles collapse quickly due to the flow. 
The need of dyes can also limit applications where they are either not allowed or difficult to 
incorporate into the flow with high uniformity. 

Metal films integrated in microchannels can act as photothermal heat sources when 
illuminated. Because of the high thermal conductivity of metal, the converted heat is 
effectively transferred to the surrounding liquid and causes it to reach a temperature above the 
boiling point. The heated liquid vaporizes rapidly, which leads to the explosive expansion of 
hot steam and generation of vapor bubbles. Those bubbles can reach hundreds of micrometers 
in diameter in tens of seconds, and remain in a steady state as long as the irradiation is kept 
on. Laser-induced photothermal bubbles generated on the surface of metal films have been 
utilized in microfluidic devices for altering the propagation of surface plasmon polariton 
(SPPs) [18], fluid pumping and valving [19,20], concentrating and manipulating 
particles/cells [21–23], and direct-writing micro-patterns [24]. While it requires significant 
less laser power compared to other laser-based techniques, hundreds of milliwatts are still 
needed to generate photothermal microbubbles on metal films. 

As an alternative, noble metal nanoparticles of Au or Ag hold great promise for the role as 
photothermal heaters. They are excellent light absorbers when illuminated at the plasmonic 
resonance wavelength, which is tunable by nanostructure design. The photothermal bubbles 
generated around colloidal plasmonic nanoparticles under laser irradiation have been explored 
for various biomedical applications, such as ablation of biological tissues [25], cell imaging 
[26], and cell theranostics [27]. For example, Halas’s group explored the generation of 
nanobubbles around gold nanoparticles (AuNP) dispersed in a liquid under solar [28] and 
resonant excitation [29]. However, most experimental and theoretical studies are carried out 
under pulsed laser illumination, in which the bubbles collapse immediately after generation, 
having a life cycle of nanoseconds. The irradiated nanoparticles also risk shape modification 
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or even thermal destruction from the laser pulses, limiting their reusability and reliability. 
Additionally, it is challenging to form a robust, uniform layer of solution-synthesized 
colloidal nanoparticles in a microfluidic channel, thus limiting its practical use for flow 
manipulation. Huhn et al. [30] observed bubbles generated around agglomerated AuNP 
clusters embedded in polyelectrolyte films under continuous illumination, demonstrating 
laser-mediated superheating. Baffou et al. [31] studied superheating and bubble generation 
dynamics around continuous-wave (CW) laser-activated uniform arrays of AuNPs. 
Representative techniques for laser-based microbubble generation are summarized in Table 1. 

Table 1. Summary of bubble generation techniques 

irradiation light absorber power/energy bubble size 
bubble 
lifetime 

ref. 

ns pulsed laser 
light absorbing 

dye 
44-56 μJ up to 50 μm cycle <10 μs [13] 

CW metal film 35-250 mW up to 570 μm 
tens of seconds 

in growth 
[18,19,21] 

CW AuNP array 25-1000 mW a few micrometers - [29] 

CW AuNP array 15-300 mW a few micrometers 
seconds to 

hours 
[31] 

ns pulsed laser 
AuNP 

suspension 
0.6-1.5 μJ up to 500 nm 50-500 ns [32] 

CW NPGD array 5-50 mW a few micrometers 
seconds to 

minutes 
this work 

In this paper, we report microbubble generation in microfluidic devices using 
photothermal effect aronound nanoporous gold disk (NPGD) array under CW laser 
illumination. NPGD arrays recently developed by our group provide tunable plasmonics with 
high-density electric field localization [33]. We have demonstrated their applications for 
photothermal conversion and light-gated molecular delivery [34], surface-enhanced Raman 
scattering [35], fluorescence, near-infrared absorption [36], integration with microfluidic 
devices, and as a surface coating for photothermal inactivation of pathogens [37]. NPGD 
arrays have been fabricated directly on a glass substrate via a monolithic process, thus 
providing uniform coverage that are essential for bubble generation at arbitrary locations. 
Owing to the porous nature, NPGDs exhibit higher photothermal conversion efficiency 
compared to AuNP of similar size [34]. In addition, the fabrication of NPGD substrates do 
not require additional immobilization of the nanoparticles. Using a computer-generated 
holography realized on a phase-only spatial light modulator (SLM), simultaneous and 
independent generation of multiple microbubbles can be achieved at arbitrary locations. In the 
rest of the paper, we first provide the microfluidic design and fabrication steps. We then show 
the dynamics of bubble formation and growth under different power density and the bubble 
shrinkage when the laser is turned off. Finally, we show parallel microbubble generation and 
independent control of individual bubbles inside the microfluidic channel and the use of the 
microbubbles as multifunctional light-gated microvalves for dynamic flow manipulation. 

2. Materials and methods

Figure 1(a) shows the experimental platform based on a projection microscopy system 
described in our previous work [38] and briefly outlined here. The laser source was a 532 nm 
CW laser (Spectra-Physics Millennia X) with its output incident on an SLM (Boulder 
Nonlinear Systems, Inc.) for phase modulation. The modulated beam forms a laser 
illumination pattern, which was directed towards the sample via the back port and the 
objective of an inverted microscope (Olympus IX70). The focused laser beam has a beam 
width of ~2.5 μm on the sample plane. A tungsten-halogen lamp on top of the microscope 
was employed for bright-field observation. The translucency of the NPGD substrate enables 
simultaneous imaging and heating from either top or bottom side of the channel. The 
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mW), the bubble diameter during its growth in degassed water was traced and plotted against 
time, as shown in Fig. 2(b). In comparison, the fitted curve for 8 mW in degassed water is 

0.152
15.5 t , where bubble generation in degassed water had a lower expansion rate, and the 

bubble size was smaller compared to normal DI water. 
The minimum power required for a single microbubble generation on NPGD substrate 

was 5 mW, equivalent to 1 × 105 W/cm2 power density. In comparison, with AuNP arrays 
under CW laser irradiation at the plasmonic resonance wavelength, the power threshold for 
microbubble generation with focused laser beam exceeds 20 mW [29,31]. The performance of 
microbubble generation with NPGD as the heat absorber showed excellent heat transfer 
capability and relatively lower power consumption. 

Microbubble shrinkage dynamics 

After bubble generation, once the laser is turned off, the microbubble starts to shrink in size 
due to the removal of heat source. Depending on the initial size of bubble shrinkage, the 
bubble volume decreased gradually over a few seconds to a few minutes, until it finally 
disappeared. The shrinkage dynamics were traced for microbubble generated with 16 mW, 12 
mW, and 8 mW in normal DI water and 8 mW in degassed DI water. The variation of bubble 
diameter over time is plotted in Fig. 2(c), where the time origin (i.e. t = 0) was arbitrarily 
chosen at the moment when the bubble disappeared. Instead of a sudden decrease in size as 
with cavitation bubbles, the shrinkage curve resembles the inverse of the growth curve, but 
spans over a longer time scale. The fitted curves for bubble diameter as a function of time are 

0.34
8.22 t , 

0.34
8.49 t , 

0.33
8.55 t  and 

0.34
8.92 t  for 16 mW, 12 mW, 8 mW in normal DI water 

and 8 mW in degassed DI water, respectively. As shown in Fig. 2(c) inset with the plot 
zoomed in to the last 15 s of the shrinking process, regardless of the initial bubble size, the 
curves are almost overlapping. During the shrinking process, the bubble diameter appeared to 
be linearly dependent on ~ 1/3t . By investigating microbubbles with various sizes, we found 
that the dynamics was highly reproducible, despite the starting size of the shrinkage process, 
which is consistent with previous findings involving microbubbles generated in a similar 
fashion [31]. The vapor and gas could be considered as ideal gases under saturated conditions 
[39,41]. Under a constant dissolution rate, the bubble lifetime 0τ  and initial radius 0r  satisfies 

the relationship 1/3
0 0r τ∝  [31]. The required laser power and maximum bubble size for a 

specific response time of bubble generation/collapse cycle could be estimated by the above 
calculations for fine control during applications. 

Generation and control of microbubble arrays 

Since the microbubble generation site is dependent on the position of laser beam instead of 
the patterning of nanoparticles inside the channel, we demonstrate the function of 
programmable bubble generation by the creation of arrays of microbubbles in designed 
patterns. The location of microbubbles could be arbitrarily chosen within the field of view, 
which provides flexibility in the manipulation of flow or particles in the flow. As shown in 
Fig. 3(a-b), arrays of microbubbles in patterns consisting of 4 and 8 bubbles were generated 
simultaneously by their pre-defined laser illumination patterns. The slight size difference 
among individual bubbles is due to the possible variation of NPGD coverage throughout the 
whole field of view. The convective flow induced by the temperature gradient from the 
bubble surface towards the surrounding liquid, as well as the motion of flow actuated by the 
growth and shrinkage dynamics of the microbubbles, have potential applications of flow 
mixing. 

Besides the parallel generation of microbubbles, the programmable patterning function is 
also capable of controlling individual microbubbles within a pre-existing microbubble array. 
By dynamically refreshing the illumination pattern that includes or excludes specific laser 
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