
Noninvasive glucose sensing by
transcutaneous Raman spectroscopy

Wei-Chuan Shih
Kate L. Bechtel
Mihailo V. Rebec



Noninvasive glucose sensing by transcutaneous
Raman spectroscopy

Wei-Chuan Shih,a,b,c,* Kate L. Bechtel,c,† and Mihailo V. Rebecd

aUniversity of Houston, Department of Electrical and Computer Engineering, 4800 Calhoun Road, Houston, Texas 77204, United States
bUniversity of Houston, Department of Biomedical Engineering, 4800 Calhoun Road, Houston, Texas 77204, United States
cSpectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
diSense CGM, 27700SW 95th Avenue, Wilsonville, Oregon 97070, United States

Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algo-
rithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a
dogmodel was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to
45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear
veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was
obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance
of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine
the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of
∼1.5 − 2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the sig-
nal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive
errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose
values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleach-
ing and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications
and provides areas where the technology can be improved in future studies. © 2015 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.20.5.051036]
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1 Introduction
Applications of spectroscopy techniques to biological and bio-
medical problems have been rapidly advancing in recent
years.1–3 Based on inelastic scattering, Raman spectroscopy, as
a type of vibrational spectroscopy, provides extremely rich
molecular information about multiple chemical species present in
a sample/specimen simultaneously.4–13 The intensity of a Raman
signal bears a linear relationship to the analyte concentrations,
therefore, Raman spectroscopy can be used as a quantitative tool
in concentration measurements as well.1,4,5,14–17 An ultimate goal
in this field is to develop Raman spectroscopy-based techniques
for biomedical applications through instrumentation,18–22 plas-
monic substrates,23–27 devices,28,29 assays,30,31 and techniques.32,33

Raman spectroscopic measurements, like other optical tech-
niques, pose minimal danger from exposure to ionizing radia-
tion due to the low-energy optical radiation exposure. One
additional advantage of the NIR source used in Raman is
that the tissue sampling region is much deeper than those pro-
vided by other optical approaches due to the reduced tissue
scattering and reduced water and chromophore absorption at
those wavelengths. As a result, NIR Raman spectroscopy satis-
fies two critical prerequisites for a truly noninvasive technique
to transcutaneously monitor clinically important chemicals
in vivo.14,21,34–36 Nevertheless, noninvasive techniques of this
kind will be valuable in a wide variety of clinical settings
and laboratory tests.

We have employed multivariate calibration techniques such
as partial least squares (PLS) and constrained regularization to
noninvasive glucose sensing using Raman spectroscopy.1,14,16,17

Glucose is a convenient analyte to study because its concentra-
tion can be conveniently altered and monitored in humans and
other living animals such as dogs. The dog model provides sev-
eral advantages such as a similar physiological glucose response
as humans, no motion artifacts owing to the anesthesia that can
be administered, and the flexibility to perform glucose clamping
studies.

The dog study described in this paper was performed on a
beagle anesthetized for ∼8 h, during which its blood glucose
concentration was clamped at several different levels. Raman
spectra were continuously acquired from the ear and reference
blood glucose measurements were taken using plasma glucose
obtained from venous blood draws. Results from PLS analyses
demonstrate that the calibration model can predict samples that
were not included in the calibration set. The PLS analysis
included a leave-one-level-out analysis, and thus represents
a step in the direction of a completely prospective analysis.

2 Methods

2.1 Raman System

The Raman system for this study was modified from the previ-
ously published version for human volunteers.14 The geometry
of the light delivery path was modified to allow the excitation
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laser to have normal incidence from beneath the dog ear through
a hole in the paraboloidal mirror that subsequently collects and
collimates the backscattered Raman signal. In other words, a
mirror was placed underneath the paraboloidal mirror to redirect
the originally in-plane optical path to be perpendicular to the
optical plane. Figure 1 shows the equivalent optical path after
folding the perpendicular path in-plane. The dog ear was placed
in contact with a sapphire window embedded within an alumi-
num platform, with the backside of the window serving as a
reference plane. The optimal distance between the reference
plane and the paraboloidal mirror was determined by maximiz-
ing the intralipid Raman signal from a tissue phantom contained
in a sample holder simulating the dog ear geometry, i.e., a
1.5 ðradiusÞ × 0.2 ðthicknessÞ cm cylindrical tissue phantom sol-
ution with optical properties and a thickness close to the dog ear.
Figure 2 shows an aluminum sample stage where a dog subject
can lie on its stomach with its ear positioned over the sapphire
window aperture.

2.2 Experimental Protocol

The dog was maintained under an isoflourane inhaled anesthetic
for the duration of the study. The blood glucose levels were
clamped at eight levels for a period of 45 min at each level.
These glucose levels were achieved and maintained by infusing
20% dextrose and insulin into ear veins. Blood samples were
drawn every 5 min and were analyzed using a glucose analyzer.
The temperature of the ear was constantly maintained with a
closed-loop thermoelectric cooling temperature control of the
plate containing the sapphire window. The dog’s glucose con-
centration was clamped at eight different levels within the range
5.6 to 25.6 mM (100 to 460 mg∕dL). Each clamping level lasted
for approximately 35 min. During the course of the experiment,
Raman spectra were continuously collected with 1.8 s per frame
and a 1.6 s data transfer time, giving a frame every 3.4 s. (The
duty cycle was limited by data transfer.) The laser was not shut-
tered during the file transfer. Each frame has pixel dimensions
260 ðVÞ × 1340 ðHÞ as hardware binning of every five vertical
pixels was chosen. After data collection, the curvature correc-
tion algorithm was applied to all frames before vertical bin-
ning.37 Since various frame-averaging schemes were adopted,
the individual spectra are referred to as “frames” though they
are one-dimensional, and the subsequent averaged spectra are
referred to as “sample spectra.”

Figure 3 shows the examples of the 33-frame averaged
sample spectra with ∼18.7 min between successive spectra.
Apparent sapphire Raman peaks and a broadband decreasing

background are observed. To better accentuate Raman peaks
from the dog ear, a fifth-order polynomial background subtrac-
tion routine was employed and the background removed spec-
trum is also shown in Fig. 3 with prominent sapphire peaks.

3 Results and Discussions

3.1 Minimum Detection Error Analysis

For a nearly shot-noise limited spectrum measurement, the mini-
mum detection error can be estimated using experimental
parameters such as signal-to-noise ratio (SNR) and an overlap
factor.15 To estimate spectral random noise, we calculated the
variance of each pixel among 10 adjacent frames (frame
6485 to 6494). The rational for selecting these frames is to min-
imize the apparent variance owing to the background decay. The
decay was observed to diminish with time. The calculated two-
dimensional variance map was then processed by the curvature
correction algorithm previously described and a single spectrum
of variance was obtained. The estimated noise value, 360, was
obtained from the average across the square root of the variance
spectrum.

Fig. 1 Raman system configuration for the dog study.

Fig. 2 The dog was positioned on its stomach with the ear positioned
over the sapphire window aperture of the aluminum sample stage.

Fig. 3 33-frame averaged sample spectra with ∼18.7 min in between
2 adjacent spectra. A background removed spectrum is shown below.
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The Raman spectrum of glucose was obtained from a 50-mM
glucose water solution contained in the dog-ear-like sapphire
sample holder. The norm of the glucose signal was calculated
to be ∼56 mM−1 using either a pixel range 240 to 1040 or
200 to 1200. The overlap factor for the experiment was estimated
to be ∼1.2 to 1.4 using the nine-component model described ear-
lier. Using a previously developed theory, the minimum detection
error based on these experimental parameters is ∼8.36 to 9 mM
(using raw frames).15 If frame averaging is performed,ΔC is 1.46
to 1.57 mM and 1.04 to 1.11 mM for 33- and 65- frame averag-
ing, respectively. Note that the ΔC formalism considers only ran-
dom noise in the predicted spectra, not the calibration spectra nor
the reference concentration, i.e., an absolutely correct model.

3.2 Preprocessing

Additional preprocessing steps were implemented besides the
background removal mentioned earlier. Among the 6498
frames, we observed that the laser intensity fluctuated at two
fixed frequencies, causing fluctuations at the same frequencies
in the collected frames. Fourier filtering was employed to effec-
tively remove the slowly varying laser intensity fluctuations.
Owing to the high SNR, the charge-coupled device fixed pattern
noise was very significant. We first heavily smoothed the sample
spectrum using a 101-point Savitzky–Golay filter and then sub-
tracted the smoothed spectrum from the original sample spectra
to identify the fixed pattern noise. The fixed pattern noise in
individual frames was subsequently removed according to inten-
sity levels.

3.3 Partial Least Squares Analysis with Cross
Validation

Various datasets were formed for PLS analysis using leave-one-
out cross validation with differences in the following aspects:

number of frames averaged; with or without 25-pt Savitzky–
Golay smoothing; and spectral range selection.

The results give us a general evaluation of the performance of
our technique. Figures 4(a) to 4(d) show example results from
one analysis with 33-frame averaging, 25-pt smoothing, and the
plasma glucose as the reference concentration. Figure 4(a)
shows the calculated root-mean-square error of the cross valida-
tion (RMSECV) versus number of PLS factors. The observed
minimum indicates that the optimal calibration model contains
eight factors. The Clark’s error grid is plotted in Fig. 4(b) using
the predicted concentrations obtained from the cross-validation
procedure. This type of grid analysis is used by physicians to
evaluate the performance of glucose analysis technologies.
Predictions falling in zones A and B are clinically considered
acceptable. Figure 4(c) compares the reference to the predicted
glucose concentration over time (∼1.87 min between two sam-
ples). The regression vector and glucose Raman spectrum are
plotted in Fig. 4(d). Distinctive similarities are observed
between the two, indicating that glucose was indeed measured
because there was no prior glucose spectral information supplied
to the PLS model. Table 1 lists all results from the cross-vali-
dation analyses with various calibration set formations.

3.4 Partial Least Squares Analysis with Cross
Validation and Prediction

We then picked one set of parameters, i.e., 33-frame averaging
and 25-pt smoothing, to perform further analysis with level split-
ting. Because the 65-frame averaging scheme did not give much
improved RMSECVand results in fewer samples, analyses here
were done using a 33-frame averaging. All the samples collected
at the clamping levels were divided into a calibration set and
a prediction set. Building calibration models solely based on
the leveled data avoids additional confounding factors during
the glucose rise and fall phases. PLS was performed on the

Fig. 4 Summary results from one analysis: (a) root-mean-square error of cross validation (RMSECV)
versus number of partial least squares (PLS) factors; (b) Clark’s error grid of RMSECV; (c) temporal
profiles of reference and predicted glucose concentrations (∼1.87 min between two samples); (d) regres-
sion vector (blue) and the glucose Raman spectrum (red).
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calibration set to calculate RMSECV and the b vector, which
was subsequently used to predict on the prediction set with
the root-mean-square error of prediction (RMSEP). The b vector
was then used to predict on all samples except the calibration
samples, excluding the samples during glucose rise and fall
phases, to calculate RMSEP1, and including the samples during
glucose rise or fall phases to calculate RMSEP2 and R2. Table 2
lists all results from the level-splitting analysis. The higher val-
ues observed in RMSEP2 suggest that the divergence between
ISF and plasma glucose is significant during the glucose rise and
fall phases, which could not be corrected for using the calibra-
tion models based on leveled regions. These RMSEP values
agree with the minimum detection error estimated earlier.

The next analysis was to form the calibration set with one
level entirely left out, and then predict on the left-out level
(RMSEP1) and all samples not included in the calibration set
(RMSEP2). Results are summarized in Table 3. It is observed
that the RMSEP2 for level 1 is much higher than for other levels.
This is because fluorescence photobleaching was most

significant during that time and also the instrument and exper-
imental subject needed a warm up time.

Finally, two randomized concentration profiles were used to
demonstrate that the previous calibration models are indeed
predictive. In the first case, random concentrations in the exper-
imental range were paired with measured spectra. In the second
case, the order of the reference concentration measurements was
randomly scrambled. As shown in Table 4, result from these
tests suggests RMSEP >7.5 mM with a model that lacks pre-
diction capability. Therefore, results from previous calibration
models are predictive for glucose concentration.

4 Conclusions
This paper describes an in vivo survival dog study performed on
a beagle anesthetized for ∼8 h, during which its blood glucose
concentration was clamped at several different levels. A glucose
clamping study allows better disentangling of systematic effects
from real glucose changes. Raman spectra were continuously
acquired from the ear and reference blood glucose measure-
ments were taken via venous blood draw. Using only the
level data, RMSEP on the order of 1.5 to 2 mM (10% of the
average concentration) was obtained, agreeing with the mini-
mum detection error analysis. This RMSEP is higher than
needed for diabetic patients. However, the average glucose
level in the dog study (∼15 mM) was significantly higher
than the fasting concentration in human subjects. Since it is criti-
cally important to accurately determine glucose concentration
near hypoglycemia, future experimental designs will include

Table 1 Cross-validation analysis with various preprocessing and
parameters.

Preprocessing

Statistics

RMSECV (mM) R2

65f, 365 − 1519 cm−1 2.03 0.89

65f, 25 pt, 365 − 1519 cm−1 1.84 0.91

65f, 25 pt, 297–628 cm−1 2.91 0.77

65f, 25 pt, 297–1703 cm−1 1.56 0.93

65f, 25 pt, 1–1703 cm−1 1.83 0.79

65f, 25 pt, 297 − 1703 cm−1, 5op 1.72 0.92

33f, 365–1519 cm−1 2.06 0.89

33f, 25 pt, 365–1519 cm−1 1.87 0.91

33f, 25 pt, 297–628 cm−1 3.10 0.74

33f, 25 pt, 297–1703 cm−1 1.65 0.93

33f, 25 pt, 1–1703 cm−1 1.67 0.93

33f, 25 pt, 297 − 1703 cm−1 5op 1.76 0.92

Table 2 Level-splitting analysis with various preprocessing and
parameters.

Reference
wavenumber
range

Statistics

RMSECV
(mM)

RMSEP1
(mM)

RMSEP2
(mM) R2

365−1519 cm−1 1.78�0.18 1.77�0.22 2.19�0.24 0.93�0.01

297–1703 cm−1 1.78�0.18 1.77�0.22 2.19�0.24 0.94�0.01

297–1703 cm−1,
5op

1.47�0.14 1.4�0.12 2.06�0.09 0.94�0.01

Table 3 Leave-one-level-out analysis with various preprocessing
and parameters.

Preprocessing

Statistics

RMSECV
(mM)

RMSEP1
(mM)

RMSEP2
(mM) R2

Level 1 1.81� 0.17 1.84� 0.29 4.83� 2.55 0.83� 0.08

Level 2 1.9� 0.25 1.88� 0.26 2.66� 0.55 0.92� 0.03

Level 3 1.84� 0.24 1.88� 0.26 2.81� 0.49 0.91� 0.03

Level 4 1.89� 0.19 1.85� 0.23 2.82� 0.54 0.91� 0.03

Level 5 1.83� 0.42 1.76� 0.27 2.73� 0.34 0.90� 0.03

Level 6 1.89� 0.34 1.83� 0.55 2.25� 0.58 0.93� 0.02

Level 7 1.88� 0.14 1.82� 0.26 2.38� 0.27 0.92� 0.02

Level 8 1.63� 0.14 1.63� 0.23 3.08� 0.29 0.87� 0.03

Table 4 Randomized concentration analysis.

Preprocessing

Statistics

RMSECV
(mM)

RMSEP1
(mM)

RMSEP2
(mM) R2

Scheme 1 7.56� 0.78 7.56� 0.5 7.72� 0.4 0.06� 0.07

Scheme 2 7.83� 14 7.94� 0.61 7.72� 0.5 –0.01� 0.07
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lower clamping concentrations. Distinctive similarities were
observed between the resulting b vector and the glucose
Raman spectrum measured in water, indicating that glucose
was indeed measured. We have identified the photobleaching
of tissue autofluorescence to be a key error source from the
results of the leave-level 1-out analysis. A potential strategy
for a mitigating scheme was suggested.38 Results from this
study demonstrate the feasibility of detecting glucose in vivo
using transcutaneous Raman spectroscopy. In addition, the
analyses and results provide valuable insights for improving
our technique for future studies.
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