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Abstract. The ability to quantify uncertainty in information extracted
from spectroscopic measurements is important in numerous fields.
The traditional approach of repetitive measurements may be imprac-
tical or impossible in some measurements scenarios, while chi-
squared analysis does not provide insight into the sources of uncer-
tainty. As such, a need exists for analytical expressions for estimating
uncertainty and, by extension, minimum detectable concentrations or
diagnostic parameters, that can be applied to a single noisy measure-
ment. This work builds on established concepts from estimation
theory, such as the Cramér-Rao lower bound on estimator covariance,
to present an analytical formula for estimating uncertainty expressed
as a simple function of measurement noise, signal strength, and spec-
tral overlap. This formalism can be used to evaluate and improve
instrument performance, particularly important for rapid-acquisition
biomedical spectroscopy systems. We demonstrate the experimental
utility of this expression in assessing concentration uncertainties from
spectral measurements of aqueous solutions and diagnostic parameter
uncertainties extracted from spectral measurements of human artery
tissue. The measured uncertainty, calculated from many independent
measurements, is found to be in good agreement with the analytical
formula applied to a single spectrum. These results are intended to
encourage the widespread use of uncertainty analysis in the biomedi-
cal optics community. © 2007 Society of Photo-Optical Instrumentation Engineers.
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Introduction

eal-time analysis of spectroscopic measurements is essential
n applications such as pharmacokinetics,1 bioreactor
onitoring,2 and medical diagnosis.3 In our laboratory4,5 and

thers,6,7 real-time analysis of spectroscopic measurements
cquired in vivo is under study to provide clinicians with im-
ediate diagnoses, in lieu of histopathology. In medical ap-

lications, the confidence in the measurement of a particular
iagnostic parameter can affect the course of disease manage-
ent, with ramifications to the health of the patient. The un-

ertainties and associated confidence intervals of the param-
ters extracted from spectroscopic measurements serve to
ssess the accuracy, stability, and diagnostic value of the data.
he importance of uncertainty is related to other figures of
erit commonly mentioned in the chemometrics field: signal-
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to-noise ratio, precision, limit of detection, sensitivity, error
propagation, and selectivity.8,9 Note that measurement uncer-
tainty �precision� is independent of measurement accuracy.

The most effective way to extract quantitative information
from spectral data in a linear system is by utilizing the full
spectrum �multivariate analysis�.10 Consider, for example,
measurement of the concentration of a particular species or
analyte. This requires a model that, when applied to a mea-
sured spectrum, yields the concentration of interest. In most
cases, the model can be conveniently expressed in terms of a
regression spectrum or “b-vector” for a particular analyte; the
analyte concentration of a prediction sample can then be ex-
pressed as the inner product of the measured spectrum and the
b-vector. When all of the chemical components are known,
the model can be based on the constituent spectra, measured
directly, and ordinary least squares �OLS� analysis can be
applied, yielding a b-vector for every component of interest.
If the spectra cannot be measured directly, or if one or more
components are not known, a calibration step is required to
generate the b-vectors, and a direct calibration scheme such as
classical least squares �CLS�, or indirect calibration schemes
such as partial least squares �PLS� or principal components
1083-3668/2007/12�6�/064012/10/$25.00 © 2007 SPIE
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egression �PCR� can be used. The calibration step requires a
et of spectra with reference concentrations of the analyte�s�
f interest. Similar approaches can be used to measure param-
ters extracted from biological tissue spectra that are used in
isease diagnosis.11,12 A concept closely related to the
-vector is the net analyte signal �NAS�, introduced by
orber,13 and extended by Lorber, Faber, and Kowalski,14

hich is the portion of the signal for each analyte that is
rthogonal to the other analyte spectra. The NAS is also use-
ul in evaluating the figures of merit mentioned earlier.14

In principle, one can evaluate the parameter uncertainty by
epeating the measurement many times and analyzing the
tandard deviation of parameters extracted from each of these
ultiple measurements. However, this is not practical for ap-

lications such as medical diagnosis, in which only one or a
ew measurements can be acquired. Alternatively, one can use
hi-squared ��2� analysis to calculate parameter uncertainties
xtracted from a single spectrum.15 �2 analysis is a very use-
ul technique, but it is statistical rather than analytical and
rovides little insight into the origins of uncertainty.

In this work, we adopt an alternate approach to uncertainty
nalysis and here present a method of analysis that can be
sed in conjunction with a single spectrum to provide physi-
al insight into the sources of uncertainty. The analytical ex-
ression employed for this purpose describes concentration
ncertainty as a function of measurement noise, signal
trength, and spectral overlap—quantities easily extracted
rom spectroscopic measurements. As such, the method can
uide improvements in data modeling, as well as the optimi-
ation of the instrument. This approach can be considered as
n extension and a complement to previous work of our re-
earch group.16 In that study, we derived an analytical expres-
ion for the limiting uncertainty in analyte concentrations ex-
racted from Raman spectra using PLS, and showed it to hold
xperimentally.16 Uncertainty was expressed as a function of
easurement noise and the b-vector using PLS. Since then,
e have worked on characterizing the lower bound on the
ncertainty in extracted concentrations using a more generally
pplicable approach.17 Other groups have employed our
ramework in analyzing the uncertainties and sources of error
n spectroscopic measurements.18

Our approach is a special case of the error analysis of
orber and Kowalski,19 where calibration is very accurate and

hus model uncertainty is negligible. Lorber and Kowalski
ave presented a complete and elegant treatment of error
ropagation associated with multivariate calibration. They de-
ived a prediction error formula that depends on the noise in
he spectrum of the prediction sample and the spectra and
oncentrations of the analyte of interest in the calibration set.
he formula was successfully tested on near-infrared reflec-

ance data analyzed by PCR.19 One practical shortcoming of
he formula is its complexity and the difficulty in readily ap-
lying it to experimental data. Other groups have taken simi-
ar approaches to error analysis.20–22 We focus here on the
mportant case in which the spectra and concentrations of the
alibration dataset are measured more precisely than that of
he prediction sample. This is often the case, because vari-
bles such as integration time may be increased or optimized
or the calibration data. Therefore, in the limit in which cali-
ration noise is small, uncertainty will be dominated by mea-

urement noise in the prediction sample.

ournal of Biomedical Optics 064012-
Although we are focusing on the case when measurement
noise dominates, the analytical expression presented here can
be used, in many cases, even when model uncertainties are
not negligible. Therefore, we may calculate both actual un-
certainty, which takes into account modeling and measure-
ment noise, as well as the limiting uncertainty, where model
noise is disregarded. The limiting uncertainty, the unavoidable
uncertainty associated with the inherent spectral noise in the
prediction sample and the spectral makeup of the model, also
specifies the smallest concentration at which a constituent can
be detected. This approach is applicable to concentration mea-
surements and for determining diagnostic accuracy of param-
eters obtained for spectral diagnosis of disease, using linear
spectroscopic techniques such as Raman scattering or fluores-
cence, and is very important in system design and evaluation.

In the following, we derive an analytical expression for the
limiting uncertainty, and show its equivalence to �2 analysis
�see the Appendix in Sec. 7�. We demonstrate that the concen-
tration uncertainty calculated by the analytical formula is in
good agreement with that measured experimentally from
aqueous solutions of clinically relevant analytes. Furthermore,
we demonstrate that in this case the calculated actual uncer-
tainties are very close to the limiting uncertainties, which is
indicative of the accuracy of our data acquisition and model-
ing. To illustrate the biomedical application of this analytical
formula, we calculate uncertainties of parameters extracted
from tissue spectra that are used in disease diagnosis. These
results are intended to encourage the widespread use of un-
certainty analysis in the biomedical optics community.

2 Theory
We adopt a linear algebra approach and notation in this work.
All vectors are column vectors and are denoted by bold low-
ercase letters. Similarly, matrices are bold uppercase letters
comprising multiple column vectors, where size is indicated
in parentheses �row�column�. Measurements and spectra
are denoted as vectors, in that each element represents the
response of a particular detector �e.g., charge-coupled device
�CCD� pixel�. Many of the results presented below follow
from Kay, a standard text in statistical signal processing.23

2.1 Linear Model
We begin with the standard additive noise linear model:

s = Pc + w . �1�

The vector s is the observed measurement �M �1�, the matrix
P contains the model constituent vectors �M �N� and is full
rank, the vector c contains the underlying coefficients of the
model constituents �N�1�, and the vector w represents noise
in the system �M �1�. Here M represents the number of
wavelengths and N represents the number of model compo-
nents. In other words, the measured vector s is a linear com-
bination of the model components in P, weighted by the co-
efficients in c, and with the addition of random measurement
noise w. The w is assumed to be a zero-mean Gaussian ran-
dom vector with a known or measurable covariance matrix
Cw. Our goal is to analytically determine the best estimate ĉ
�fit coefficients� of the true underlying coefficients c and the
uncertainty specified by the standard deviation of that

estimate.

November/December 2007 � Vol. 12�6�2
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The application of the model, Eq. �1�, to characterize spec-
roscopic measurements is appropriate. Raman and fluores-
ence spectra �s� have been shown experimentally to be linear
ombinations of the distinct individual spectra of the underly-
ng chemical species that can be measured in isolation �P� and
roportional to the concentration of those species �c�.24,25

easurement noise �w� is typically associated with the mea-
urement system and detector, and its statistics �Cw� can be
eadily measured; moreover, the Gaussian assumption also
olds well in practice.

It should be noted that Eq. �1� is a special case of a more
eneral formulation by Lorber and Kowalski19 that can be
pecialized for our model as

s = �P + �P�c + w = Pc + w�. �2�

he formulation of Eq. �2� also includes modeling uncertainty
P, taking into account the uncertainties of the concentrations
nd measurements of the constituent spectra. If the modeling
ncertainty is also assumed to be Gaussian, its effect can be
umped together with the measurement noise as w�, where the
ovariance of w� is greater than that of w in Eq. �1�. As noted
arlier, in most of this work we are interested in the limiting
ase in which the measurement noise of the prediction sample

is the dominant source of uncertainty. In this way, we cal-
ulate the limiting uncertainty.

.2 Estimator Performance

n determining the optimal estimator, we restrict our attention
o unbiased estimators: those that, on average, accurately re-
urn the underlying parameters c. From the linear model with
he assumptions described before and estimation theory, one
an derive the minimum variance unbiased �MVU�
stimator:23

ĉ = �PTCw
−1P�−1PTCw

−1s . �3�

his estimator is desirable because out of all possible unbi-
sed estimators, it is the one that achieves the minimum vari-
nce for all combinations of unknown underlying parameters
. For the MVU estimator of Eq. �3�, it can be shown23 that its
ovariance matrix is:

cov�ĉ� = �PTCw
−1P�−1. �4�

he diagonal entries of this matrix specify the variances of
ach ĉk fit coefficient. This is the most general result, as it
pecifies the covariance and, in turn, the uncertainty of our
stimate for any particular noise covariance Cw and the model
atrix P.
The result of Eq. �4� can be specialized by assuming that w

s white �i.e., uncorrelated and identically distributed� Gauss-
an noise, so that Cw=�2I. With this assumption, the MVU

23
stimator and the covariance are given by:

ournal of Biomedical Optics 064012-
ĉ = �PTP�−1PTs . �5�

cov�ĉ� = �2�PTP�−1. �6�

The estimator, Eq. �5�, can also be recognized as the OLS
solution for ĉ.

One final remark involves the concept of the Cramér-Rao
lower bound �CRLB� from estimation theory.23 The CRLB is
a lower bound on the covariance of any unbiased estimator. It
can be shown that the covariance of the MVU estimator given
in Eq. �5� is equal to the CRLB, and hence the estimator is
deemed efficient.23 Moreover, for the linear model given be-
fore, the efficient MVU estimator implies that it is also the
maximum likelihood �ML� estimator. We revisit this last point
later.

2.3 �C
The estimation framework and the CRLB described earlier are
well-known, general concepts applicable to any type of linear
system with the previously mentioned assumptions. However,
physical insight can be provided by specializing Eq. �6� to
elucidate variables relevant to spectroscopy. We can express
P=QS, with S being a diagonal matrix, where the k’th diag-
onal entry sk is the Euclidean norm of the k’th component in
P, as follows

sk = ��
i=1

M

�Pi,k�2�1/2

, �7�

and the columns of the matrix Q are thus normalized to unit
length. This leads to a simple expression for the standard de-
viation �c of the k’th estimated parameter ĉk:

�c � std�ĉk� = ���PTP��k,k�
−1 �1/2 =

�

sk
��QTQ��k,k�

−1 �1/2 =
�

sk
· olfk.

�8�

The first factor on the right-hand side, �, describes the mea-
surement noise and sk quantifies the signal strength of the k’th
model component at unit concentration. The spectral overlap
factor olfk indicates the amount of nonorthogonality �overlap�
between the k’th model component and the other �N-1� model
components.

The overlap factor may take on values between 1 and �. If
all of the columns of P �or equivalently, Q� are orthogonal
�no overlap�, then olfk=1. In the other extreme, if the k’th
column of P �or Q� is nearly linearly dependent with one or
more columns �almost complete overlap�, then QTQ is close
to singular and its inverse does not exist. In a generalized
sense, olfk then approaches �. �In the case of two columns
being linearly dependent, one of the two columns should be
removed so that P becomes full rank, as was specified earlier.�
In other words, when the model P contains orthogonal con-
stituent spectra, the estimator uncertainty �c is equal to the
ratio �� /sk� of the measurement noise to the signal strength
for that particular component. In the extreme case of complete
spectral overlap �two chemicals with very similar Raman or
fluorescence bands across the wavelength range of interest�,
the estimate is unreliable, so �c approaches �. For the more

commonly encountered case of partial spectral overlap of the

November/December 2007 � Vol. 12�6�3
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inearly independent spectral components of P, we have 1
olfk��, and �c is a function of the three physically un-

erstandable quantities: �, sk, and olfk. The concept of over-
ap factors as defined here is directly related to variance in-
ation factors �VIF�, first proposed by Marquardt.26 The
elation of VIFs to the concept of condition number as well as
ther relevant methods for evaluation of spectral overlap are
escribed by Kalivas.27 The spectral overlap is also related to
he NAS of a particular analyte in that the former measures
verlap �interference� while the latter is an indication of non-
verlap �orthogonality�.

.4 Limiting Versus Actual Uncertainty
e note that of the three parameters, � varies from sample to

ample because shot noise is dependent on the sample-specific
aw signal, whereas sk and olfk are sample-independent for a
iven spectroscopic technique and model.

The value of � can be obtained in two different ways. One
pproach is to calculate � from each pixel across many re-
eated measurements. The alternative approach, which re-
uires only a single measurement, is to calculate � from the
esidual between the observed spectrum and the best fit using
q. �5�. The former value of � specifies the limiting uncer-

ainty, while the latter value specifies the actual uncertainty
hrough Eq. �8�. Therefore, we have

�lim =	 1

M �
i=1

M � 1

L − 1�
j=1

L

�si,j − s̄i�2�
1/2

, �9�

�act = � 1

M
�s − Pĉ�T�s − Pĉ��1/2

, �10�

here �lim is calculated as the root mean squared value
across M pixels� of the standard deviation of a representative
ixel si calculated from L repeated measurements, while �act
s calculated from the residual as the root mean squared be-
ween the data s and the fit Pĉ.

Under the assumption of Eq. �1� that the only source of
ncertainty is measurement noise, both approaches should
ield the same value for �. However, if there are also model-
ng uncertainties as in Eq. �2�, then only the second approach
ields the actual �, as the residual includes measurement and
odeling noise. Therefore, �act��lim, and the difference be-

ween the actual and limiting � can serve to evaluate the
ccuracy of the modeling. In most of the following, we use
q. �10� to calculate �. By extension, we can define �cact and
clim using the values of �act and �lim, respectively.

.5 Relation to Chi-Squared ��2�
statistical method of calculating the uncertainty in extracted

arameters can be implemented through �2 analysis. Maxi-
izing the likelihood of observing a particular measured

pectrum �in random Gaussian noise� is equivalent to mini-
izing �2. The value of a parameter that minimizes �2 is the

ptimal maximum likelihood �ML� value. The �2 function �of
he underlying parameter� is parabolic in the vicinity of the

inimum, and the curvature of the parabola is proportional to
he uncertainty �standard deviation� in that parameter.15 Spe-

ifically, the variance of the parameter is equal to the recipro-

ournal of Biomedical Optics 064012-
cal of the curvature of the �2 function.15 Equivalently, an
increase of one standard deviation of the parameter from the
value at the minimum increases �2 by unity.15,28 The �2 ap-
proach can be used in conjunction with many fitting proce-
dures, regardless of whether the underlying fitting model
is known �or directly measurable� or determinable through
calibration.

The analytical expression for �c, Eq. �8�, is equivalent to
the one obtained statistically through �2 analysis. This is to be
expected, since the MVU estimator �or the least squares esti-
mator� is equivalent to the ML estimator. Hence the �2 crite-
rion, used in determining the ML estimate, should yield the
same value for the parameter uncertainty as the analytical
formula obtained for the MVU estimator. This is demon-
strated in the Appendix in Sec. 7.

3 Methods
In this section, we demonstrate the application of the previous
error analysis formalism to the estimation of experimental un-
certainty in a set of spectral measurements. Two experiments
are performed, both using near-infrared Raman spectroscopy.
In the first experiment, we prepare aqueous mixtures of
known concentrations of clinically relevant analytes by dilu-
tion from stock solutions. Our goal is to extract the concen-
tration measurements from the spectral data using OLS fitting
of component spectra. The reference analyte concentrations
are accurately known, and the spectral noise of the component
spectra is minimal. Therefore, we can demonstrate both accu-
rate extractions of concentrations in the prediction set and
accurate assessment of their uncertainties via our formalism.
In the second experiment, we record spectra of human artery
tissue from which we obtain diagnostic parameters. Although
the spectral components of the artery tissue spectra are known
with minimal uncertainty, accurate reference concentrations
are unavailable. Therefore, we again utilize OLS, but we ob-
tain the relative �normalized� fit coefficients for each model
parameter. From this, we demonstrate uncertainty assessment
of measurements from biological tissue and the resulting con-
fidence in a particular diagnosis.

3.1 Concentration Measurements
Raman spectra were acquired from 60 aqueous solutions of
glucose, creatinine, and urea with randomized analyte concen-
trations ranging from 0 to 50 mM. The solutions were con-
tained in a 1-cm fused silica cuvette that had been pho-
tobleached for one hour to deplete fluorescent impurities prior
to the start of the experiment. The Raman system consisted of
an 830-nm diode laser that was directed through a holo-
graphic bandpass filter �Kaiser Optical Systems, Incorporated,
Ann Arbor, MI� and aperture to reduce emission outside the
center wavelength. An external photodiode monitored the in-
tensity of the laser beam and was used to correct for intensity
variations. The laser beam was then passed through beam
shaping optics and focused into the cuvette through a small
hole in a gold-coated paraboloidal mirror �Perkin Elmer,
Waltham, MA�. The power at the sample was 217 mW with a
spot area of �1 mm2. Backscattered Raman light was col-
lected by the parabolodial mirror and passed through a 2.5-in.
notch filter �Kaiser� to reject the Rayleigh peak at 830 nm.

The filtered light was focused into an optical fiber bundle

November/December 2007 � Vol. 12�6�4
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omposed of 65 fibers, core diameter 396 	m, NA=0.37
Romack Fiber Optics, Williamsburg, VA�. The input end was
n the form of a circle, and the output end was a single row of
5 fibers, serving as the entrance slit of an f/1.4 spectrometer
Kaiser�. The light was dispersed with a holographic grating
nto a liquid nitrogen-cooled CCD detector �1300�1340b,
rinceton Instruments, Trenton, NJ�. The integration time per
pectrum, 2 s, constituted one “frame,” and 30 consecutive
rames were collected. Spectra from 280 to 1700 cm−1, occu-
ying 1000 CCD pixels, were used in all data analysis. Owing
o the large CCD size and the high-NA imaging system, the
ntrance slit image appeared curved on the CCD. Direct bin-
ing of vertical pixels would result in highly degraded spec-
ral resolution.29 To correct the image curvature, a processing
outine was developed that utilizes multiple spectral lines of a
trong Raman-active material, such as acetaminophen for cur-
ature calibration. The algorithm preserves instrumental
iffraction-limited spectral resolution and improves wave-
ength accuracy of the measured spectra. The constituent
pectra of the three chemically active species �glucose, crea-
inine, and urea� acquired at 53-mM concentration, as well as
hose of water and cuvette, are shown in Fig. 1. By applying
he OLS fitting specified by Eq. �5�, the experimentally mea-
ured, offset-corrected total spectrum from each frame can be
ecomposed into the concentrations of the underlying con-
tituents. �Alternatively, if the spectral noise is not white, Eq.
3� can be used in place of Eq. �5�.� All of the spectral fitting
as performed in the wavelength �CCD pixel� domain.

Some of the raw experimental spectra contained a distor-
ion in the middle of the spectral range. This artifact, which
aried in size from frame to frame, is attributed to variations
n the opening and closing of the mechanical shutter that gates
he CCD camera, which allows relatively more �or less� light
o be collected in the middle of the spectral range. Although
he amplitude of this artifact was not very large in absolute

ig. 1 Constituent Raman spectra—glucose, creatinine, urea, water
nd cuvette—plotted as functions of wavelength �CCD pixel�. The
orresponding wavenumber scale is indicated at the botttom.
erms �50 to 100 counts out of �7000�, the changes in the

ournal of Biomedical Optics 064012-
predicted concentrations from these faulty frames were sig-
nificant, creating statistical outliers from the mean of the 30
repeated measurements. The faulty frames were easily identi-
fied by looking at the shape of the residuals between the data
and the fit, and were thus excluded from the ensuing analysis
by setting a threshold on the amplitude of the residual. This
resulted in the removal of 440 frames out of the original 1800,
so that each sample contained a set of approximately 25 mea-
surements with minimal experimental artifacts.

3.2 Measurement of Diagnostic Parameters
We have applied the �c analysis to experimental Raman spec-
tra obtained from human artery tissue to illustrate the appli-
cation of this analysis method to disease diagnosis. The ex-
periment with excised human carotid artery tissue was part of
a separate study and is described in detail elsewhere.30 The
spectra were acquired using a clinical Raman system31 and
Raman spectral probe.32 The excitation wavelength was
830 nm, laser power was 100 mW, spot area �1 mm2, and
the collection time was 5 s, typically acquired in 20 consecu-
tive measurements of 0.25 s each. The details of the system
are described in Ref. 31. Raman spectra were extracted from
the raw spectra by performing a white light correction, remov-
ing probe-related background, and subtracting tissue
fluorescence.31,32 A model composed of Raman-active tissue
constituents, obtained from confocal Raman microscopy spec-
tra of eight artery morphological structures,12 was used to fit
the data using OLS. Prior to fitting, the Raman tissue spectra
were interpolated and binned onto the same wavenumber
scale as the spectral model constituent spectra. Only relative
intensities of the Raman spectral components were obtained,
and those relative fit coefficients from the eight spectral com-
ponents were normalized to sum to unity.5

4 Results
4.1 Concentration Measurements
Figure 2 shows the data, the least squares fit using the spectral
components, and the difference between the data and the fit
�the residual� for one representative mixture. We can analyze
how close the predicted parameters ĉ are to the reference
values c by means of the plot of Fig. 3. The root mean
squared errors of prediction �RMSEP� across the 1360 total
repeated measurements for glucose, creatinine, and urea are
0.488, 0.270, and 0.321 mM, respectively.

We next turn to uncertainty analysis. An empirical method
to calculate the uncertainty associated with each of the ex-
tracted fit coefficients is to repeat the measurement many
times, extract the parameters from each individual measure-
ment, and then calculate the standard deviation across the
entire set. We refer to this as the measured uncertainty. A
faster and more broadly applicable approach to estimate the
underlying parameter uncertainty is to employ the analytical
formula for �c, Eq. �8�. The parameter values calculated for
our spectra, the noise ���, signal �sk�, and overlap factor
�olfk�, are given in Table 1.

To analyze how accurately Eq. �8� characterizes the true
measured uncertainty, Fig. 4 plots the measured uncertainty
calculated from the set of repeated measurements for all 60
mixtures versus �c. The �c value for each mixture in Fig. 4

was evaluated using an effective � equal to the root mean

November/December 2007 � Vol. 12�6�5
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quared value of the individual �’s that were calculated from
ach residual in the set of repeated measurements. The figure
lso indicates a 45-deg line �black� to reference where �c
quals the measured uncertainty, as well as two additional
ines �dotted red� to indicate the region where the measured
ncertainty is within a factor of 1.5 of �c. Note that now,
very estimated analyte concentration �Fig. 3� can be associ-
ted with an error bar using the �c uncertainty �Fig. 4�.

.2 Measurement of Diagnostic Parameters
igure 5�a� shows a representative experimental Raman spec-

rum, the least squares fit using the artery morphological

ig. 2 Representative data spectrum �blue�, the least squares fit �red�,
nd the residual between the data and the fit �black� obtained from a
ixture solution. Spectral fitting is performed in the wavelength �CCD
ixel� domain; the corresponding wavenumber scale is indicated at
he bottom.

ig. 3 Predicted concentrations using Eq. �5� versus the reference
oncentrations for the three analytes. The predicted concentrations

losely follow the reference concentrations.
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model, and the residual difference between the data and the fit
obtained from a specimen of calcified carotid artery plaque
with 0.25-s integration time. The measured uncertainty in the
model fit coefficients was calculated by taking the standard
deviation from the set of fit coefficients extracted from 20
consecutive measurements of 0.25-s each. This measured un-
certainty was compared to the average uncertainty calculated
by the �c formula from Eq. �8� applied to any single one of
the 20 independent measurements. For the representative
spectrum of Fig. 5�a�, the value of � was 0.041, the sk ranged
from 2.78 to 8.89, and olfk ranged from 1.05 to 5.83 for the
set of spectral components. The measured and �c uncertain-
ties for this particular sample never deviated from each other
by more than a factor of 2.

A previously developed diagnostic algorithm33 was applied
to the fit coefficients extracted from the spectrum plotted in
Fig. 5�a�. The diagnostic algorithm uses the fit coefficients
from three morphological components �calcium mineraliza-
tion, cholesterol crystals, and foam cells/necrotic core� to
classify the artery sample as being nonatherosclerotic �intimal

Table 1 Necessary parameters for calculating uncertainty using Eq.
�8�. The constituent glucose, creatinine, and urea spectra were mea-
sured at 53-mM concentration. The only value that varies from
sample to sample is �. The value of � in the representative spectrum
of Fig. 2 is 14.9.

sk ��103� olfk

Cuvette 36.1 1.61

Water 59.8 2.44

Glucose 3.58 1.51

Creatinine 4.67 1.42

Urea 3.32 1.17

Fig. 4 Measured uncertainty �standard deviation from repeated mea-
surements� versus uncertainty calculated by the analytic formula �c
for the three analytes. The dotted lines indicate the region for which

the measured uncertainty is within a factor of 1.5 of �c.
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broplasia�, noncalcified plaque, or calcified plaque. Because
nly the relative intensities of the constituent Raman spectra
ere employed, the raw fit coefficients were normalized so

hat they sum to unity. In this way, the normalized fit coeffi-
ients represent the relative contributions of each morphologi-
al feature in the observed spectrum.33

The calculated uncertainties of each raw fit coefficient
ere similarly scaled to provide uncertainties of the normal-

zed fit coefficients: if fnorm=a*f raw, then the uncertainty
ropagates as �fnorm=a*�f raw. Figure 5�b� shows the diag-
osis for the artery specimen with the spectrum given in Fig.
�a� along with diagnoses based on several other spectra from
he artery dataset, using the diagnostic space described earlier.
he error bars in the two directions indicate the uncertainty

one standard deviation� of the normalized diagnostic fit
oefficients.

Discussion
.1 Concentration Measurements
e first note that the values of sk and olfk presented in Table
make physical sense. Of the three analytes of interest, crea-

inine has the greatest value of screatinine, which indicates that

ig. 5 �a� Representative experimental Raman spectrum �blue�, the
east squares fit �red�, and the residual between the data and the fit
black�, obtained from a calcified carotid artery plaque in 0.25 s. �b�
iagnostic algorithm, showing several representative Raman artery

pectra including the spectrum from �a� �see text for details�. The error
ars in the two dimensions are calculated using the �c equation.
CP=calcified plaque, NCP=noncalcified plaque, IF=intimal
broplasia.�
t has a relatively larger Raman scattering cross section com-
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pared to the other analytes. Considering the overlap factors,
we note that urea has the smallest olfurea, which can be un-
derstood qualitatively by the fact that its constituent spectrum
does not overlap strongly with the other constituent spectra
�Fig. 1�.

Turning to the data presented in Fig. 3, we note that the
relatively small values of RMSEP given the large range of
concentrations means that the estimator is unbiased, as ex-
pected. In addition, we find that the RMSEP values are not
very different ��4% � if the data are fit using Eq. �3�, which
takes into account wavelength-dependent noise variations,
rather than Eq. �5�. In making this comparison, Eq. �3� is
evaluated using a noise covariance Cw matrix, whose diago-
nal elements are the calculated wavelength-dependent vari-
ances of each pixel across the set of repeated measurements,
while the off-diagonal covariance terms are set to zero. �Be-
cause the number of repeated measurements ��25� was much
smaller than the number of points in the spectra ��1000�, a
direct calculation of the covariance matrix results in a rank-
deficient matrix. Instead of attempting to correct this by arti-
ficially boosting the diagonal elements, we found it more sen-
sible to just use the individual variances on the diagonals and
constrain the off-diagonal covariance terms to be zero, since
we know that our sensors are independent in any case.�

Figure 4 indicates that Eq. �8� provides an excellent esti-
mate of the measured uncertainty. The measured uncertainties
all lie within a factor of 1.5 of the �c values calculated by Eq.
�8�, as indicated by the dotted red lines in Fig. 4, with an
average deviation of only 11%. The largest contribution to the
vertical spread is due to the fact that the measured uncertainty
is calculated across a limited number of measurements
��25�, and is thus subject to its own uncertainty. We calcu-
lated the standard deviation of the estimate and found it to be
from 10 to 15% of the recorded measured uncertainty. Much
of the horizontal spread is due to the fact that the value of �
used in Eq. �8� is also calculated and is thus an estimate of the
true �. This estimate is related to the discussion of actual
versus limiting uncertainty. Any remaining deviations are
likely due to subtle uncontrollable experimental factors.

We can quantify how close we are to the limiting uncer-
tainty by comparing values of � calculated by Eqs. �9� and
�10�. Across the 60 samples, the average value of �act as cal-
culated by Eq. �10� is about 4% higher than the value of �lim,
as calculated by Eq. �9�. Although �act is greater than �lim, the
difference is very small, indicating that this measurement is
very close to the limiting uncertainty. This good agreement is
evidence that the linear model is valid and that measurement
noise is the dominant source of uncertainty.

These results indicate that the analytical uncertainty analy-
sis framework is an accurate and useful way of characterizing
the experimental uncertainty obtainable from a single mea-
surement. We note that great care was taken in accurately
measuring the reference concentrations and minimizing spec-
tral noise in the model, as well as in collecting the prediction
spectra, thus fulfilling the necessary conditions of Eq. �1�.
Because the data preprocessing steps such as curvature cor-
rection are linear and deterministic, the assumption of uncor-
related noise holds as well for the corrected spectra as for the
raw spectra. However, we observed that the distributions are
only approximately Gaussian, and this may explain some of

the small deviation. Other sources that account for imperfect
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greement between �act and �lim include the P matrix being
mperfect in modeling mixtures due to chemical interactions
n the solution and perhaps other minor inaccuracies in the

odel.
The agreement presented in Fig. 4 is similar to that which

ould result had Eq. �4� been used to calculate the uncertain-
ies while using Eq. �3� to predict the concentrations �data not
hown�, using Cw as described earlier. This result, together
ith consistent prediction accuracy described before, under-

cores the validity of the initial assumption that, when noise is
elatively constant across pixels, Eqs. �5� and �8� are valid
ractical approximations to the more analytically accurate
qs. �3� and �4� for the purposes of estimating parameters and

heir uncertainties, respectively. In this regime, use of Eqs. �5�
nd �8� is advantageous, as it can be applied to a single spec-
rum, rather than requiring multiple repeated measurements to
btain Cw.

.2 Measurement of Diagnostic Parameters
he �c analysis is particularly useful for calculating uncer-

ainty in the parameters extracted from artery tissue. This un-
ertainty translates into diagnostic error bars �Fig. 5�b�� that
ndicate the confidence of the overall diagnosis. Note that in
ig. 5�b�, one of the diagnostic dimensions is the sum of two
ormalized fit coefficients: cholesterol crystals and foam
ells/necrotic core. The uncertainty of the sum involves the
ncertainties �variances� of each individual fit coefficients as
ell as the covariance of the two, which is specified by the
ff-diagonal terms of the matrix in Eq. �6�.

Consider two specific specimens located on opposite sides
f the decision line between calcified and noncalcified plaque,
epresented by open and solid squares in Fig. 5�b�. Without
nowledge of the uncertainty in these assignments, one can-
ot be more or less confident of either classification assign-
ent. �c analysis allows for both qualitative and quantitative

ssessment of the confidence of the diagnosis by assignment
f error bars, which effectively specify a probability distribu-
ion. If we assume a bivariate Gaussian distribution specified
y mean corresponding to the fit coefficients and covariance
atrix calculated by Eq. �6�, we calculate the probability of

he solid square specimen being calcified as 80%. Similarly,
e calculate the probability of the open square specimen be-

ng noncalcified as 60%.
For simplicity, here we have considered that the classifica-

ion algorithm is perfect, meaning there is absolute certainty
bout the decision, regardless of proximity to the decision
ine. However, in practice there is an additional probability
ssociated with classification that arises from an imperfect
ecision line. Therefore, a more rigorous approach would be
o use this classifier probability as a weighting factor on the
ata point probability in calculating diagnostic confidence.

We note that the value of �act is on average 15% higher
han �lim for the 17 artery specimens examined, a somewhat
arger discrepancy than that observed for the concentration

easurements. Although data preprocessing steps are linear
nd deterministic, thus preserving the assumption about un-
orrelated noise, the tissue Raman spectra are fit after inter-
olation and binning, which could undermine that assump-
ion. Therefore, we calculated the changes in �act and �lim

efore and after interpolation, but found only a small differ-
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ence ��5% � between the two. We attribute the remaining
differences between �act and �lim to minor structure in the
residuals that result in artificially high calculated values of
�act. This finding is not surprising when considering the com-
plex nature of tissue modeling, and indicates that there is
room for improvement in the modeling.

5.3 General Comments
Knowledge of the limiting uncertainty also provides the limit
of detection. For example, under the stated assumptions, if we
calculate a value of �c for a particular sample, we can be
reasonably certain of detecting parameters �concentrations or
fit coefficients� on the order of �3�c. This quantity specifies
the lowest concentration of an analyte such as glucose that
can be detected in a mixture solution or, equivalently, the
smallest contribution of a morphological pure component
from a tissue sample.

The differences between the actual and limiting uncertain-
ties can be broken down into three cases. In the first case,
�act��lim and the residuals are featureless. This implies that
�cact��clim, indicating that the measurements are being
made with minimal uncertainty. Given the small difference
between �act and �lim for the concentration measurements
presented, we can conclude that these measurements fall in
this category. The second case is that �act
�lim and the re-
siduals are near featureless. This implies that there is noise in
the model components that can be further reduced. This case
would hold true in applications where the constituent spectra
were not measured directly but rather obtained through PCR,
for example; thus, the spectral components �principal compo-
nents� may be noisy and add to measurement noise. Even for
direct measurements of the spectral components, a particular
component spectrum may contain more noise than others and
may need to be collected again. Most of the artery tissue
measurements fall in this category, and the uncertainty analy-
sis should guide improvements in modeling until the limiting
uncertainty is reached. Lastly, the third case, where �act

�lim and the residuals have structure, means that there are
model components missing or there is some other error in the
preprocessing of the data. Some infrequent tissue spectra fall
in this category as tissue is very heterogeneous, especially
when analyzing disease progression. In this case, careful un-
derstanding of the sample properties and variation, as well as
accurate modeling, is needed to bring the uncertainty down to
the limiting level.

As mentioned earlier, the limiting uncertainty can also be
expressed in terms of parameters extracted by indirect calibra-
tion �such as PLS�, that depend on measurement noise and the
b-vector.16 The present work provides a natural extension to
those results by demonstrating the applicability of a more
general formula, Eq. �8�, that arises naturally from the CRLB
concept and that effectively breaks up the b-vector from Ref.
16 into the signal strength and spectral overlap contributions.
When only indirect calibration is possible, such as for concen-
tration measurements in solutions where individual spectral
contributions of the constituents cannot be measured directly,
the formula from Ref. 16 should be used. When both direct
and indirect calibration are possible, both the formula from
Ref. 16 and Eq. �8� can be used; this way, the formulas can be

utilized to test and compare the robustness of indirect �PLS�
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nd direct �OLS� prediction methods. Lastly, when indirect
alibration is not possible but the spectral models are measur-
ble, such as for extracting model parameters from samples
ncluding human tissue where reference contributions of par-
icular morphological features are almost impossible to ob-
ain, either formula can be used to calculate parameter uncer-
ainty. In fact, the two equations provide exactly the same
ltimate mathematical result. However, the advantage of us-
ng Eq. �8� is that it provides physical insight into the signal
trength and spectral overlap effects on the b-vector. As de-
cribed earlier, the �2 approach can always be used to esti-
ate the uncertainty by doing several constrained fits; how-

ver, the method is statistical and does not have a functional
ependence, hence it cannot provide insight to the nature of
he uncertainty.

The demonstration of experimental uncertainty being very
lose to Eq. �8� for the concentration measurements indicates
he precision of our experimental apparatus, and can be used
o guide instrument improvements. For example, increasing
he slit width of a spectrograph increases the overlap factor by
lurring the Raman peaks, but also increases the signal
trength. This tradeoff should guide instrument optimization
o yield the minimum extracted parameter uncertainty. Such
mprovements are crucial in developing multimodal spectros-
opy systems that require real-time error assessments of pa-
ameters extracted from multiple spectral modalities.30

Conclusion
e describe a simple and direct method for calculating the

ncertainty from a single spectroscopic measurement and
emonstrate its experimental usefulness, both for solution
ixtures and human tissue. Not only does the analytic �c

xpression, Eq. �8�, provide a means of calculating parameter
ncertainties, but it also assesses the calibration and consis-
ency of the experimental apparatus. Because the expression
rom Eq. �8� is the CRLB, it represents the ultimate lower
ound on the uncertainty of parameters extracted from a lin-
ar system by an unbiased estimator. Analytical expressions
or characterizing uncertainty for nonlinear fitting, such as
odeling diffuse reflectance spectroscopy measurements, are

lso presently under investigation.

Appendix
he MVU estimator is equivalent to the ML estimator for the

inear model described earlier.23 In this section, we demon-
trate that the standard deviation of the estimator obtained
nalytically is the same as that obtained through �2 analysis.
he �2 value is defined as:

�2 = �
i=1

N datai − fiti
�i

�2

, �11�

nd the associated ML estimator is determined by minimizing
his value:

ĉ = arg min
ĉ

��2� . �12�

pecializing to our linear model and recognizing the fit as Pĉ,
2
e can express � in the form of an inner product:
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�2 =
�s − Pĉ�T�s − Pĉ�

�2 . �13�

The second derivative of �2 with respect to our estimate ĉ has
a particularly useful form. Noting that:

d2

dĉ2�2 =
d2

dĉ2

�Pĉ�T�Pĉ�
�2 =

d2

dĉ2

ĉT�PTP�ĉ
�2 , �14�

and using the general property �d2 /dx2�xTAx= �A+AT� and
Eq. �6�, we can simplify the derivative quantity to:

d2

dĉ2�2 =
2�PTP�

�2 = 2 · cov�ĉ�−1. �15�

Note that �d2 /dĉ2��2 is a Hessian matrix whose �i , j� entry
specifies �d2 /dĉidĉj��2. This matrix is used by standard opti-
mization techniques and, as we see later, is particularly useful
when evaluated at the minimum �2 value. Dividing by 2,
inverting, specializing to the k’th diagonal component, and
taking the square root, we obtain:

�2 d2

dĉ2�2�
�k,k�

−1 �1/2

= std�ĉk� � �c . �16�

This expression demonstrates the connection between the ana-
lytical and standard �2 analysis of error. That is, the curvature
of �2 �as function of ĉk� is inversely proportional to the vari-
ance of the k’th estimator ĉk.

If we had not made the simplifying assumption that Cw
=�2I for the noise vector w in Eq. �1�, we could still follow
an analogous mathematical approach, as shown before, to
demonstrate that the curvature of �2 specifies the covariance,
as given by the more general formula of Eq. �4�. In this case,
Eq. �15� would become:

d2

2dĉ2�2 = PTC−1P = cov�ĉ�−1, �17�

and the final result of Eq. �16� still follows.
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