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We present a hybrid multivariate calibration method,
constrained regularization (CR), and demonstrate its
utility via numerical simulations and experimental Raman
spectra. In this new method, multivariate calibration is
treated as an inverse problem in which an optimal balance
between model complexity and noise rejection is achieved
with the inclusion of prior information in the form of a
spectral constraint. A key feature is that the constraint is
incorporated in a flexible manner, allowing the minimiza-
tion algorithm to arrive at the optimal solution. We
demonstrate that CR, when used with an appropriate
constraint, is superior to methods without prior informa-
tion, such as partial least-squares, and is less susceptible
to spurious correlations. In addition, we show that CR is
more robust than methods in which the constraint is
rigidly incorporated, such as hybrid linear analysis, when
the exact spectrum of the analyte of interest as it appears
in the sample is not available. This situation can occur as
a result of experimental or sample variations and often
arises in complex or turbid samples such as biological
tissues.

Multivariate calibration is a powerful analytical technique for
extracting analyte concentrations in complex chemical systems
that exhibit linear response.!=® Multivariate techniques are par-
ticularly well suited to analysis of spectral data because information
about all of the analytes can be collected simultaneously at many
wavelengths. The goal of multivariate calibration is to obtain a
spectrum of regression coefficients, b, such that an analyte’s
concentration, ¢, can be accurately predicted by taking the scalar
product of b with a prospective experimental spectrum, s:

c=s"b 6))

(Lowercase boldface type denotes a column vector, uppercase
boldface type a matrix; and the superscript T denotes transpose.)
The regression vector, b, is unique in an ideal noise-free linear
system without constituent correlations. Under realistic experi-
mental conditions, however, only an approximation to b for the
experimental system of interest can be found.
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Explicit and implicit multivariate calibration methods have their
own advantages and limitations. Explicit calibration methods are
often used when all of the constituent spectra can be individually
measured or precalculated.* Examples are ordinary least squares
(OLS) and classical least squares. Explicit methods provide
transparent models with easily interpretable results. However,
highly controlled experimental conditions, high-quality spectra,
and accurate concentration measurements of each of the constitu-
ent analytes (or equivalent information) may be difficult to obtain,
particularly in biomedical applications.

When all of the individual constituent spectra are not known,
implicit calibration methods are often adopted. Principal compo-
nent regression (PCR)> and partial least squares (PLS)6 are two
frequently used methods in this category. Implicit methods require
only high-quality calibration spectra and accurate concentration
measurements of the analyte of interest—the calibration data—
greatly facilitating experimental design. However, unlike explicit
methods, the performance of implicit methods cannot be simply
judged by conventional statistical measures such as goodness of
fit. As pointed out in the literature,” spurious effects such as system
drift and covariations among constituents can be incorrectly
interpreted as legitimate correlations. Furthermore, implicit
methods such as PCR and PLS lack the ability to incorporate
additional information beyond the calibration data about the
system or analytes. Such prior information has the potential to
improve implicit calibration and limit spurious correlations.

The incorporation of prior information into models has been
extensively pursued in fields such as pattern recognition, machine
learning, and inverse problems. The use of prior information
generally helps stabilize and enhance deconvolution, classification,
or inversion algorithms. In multivariate calibration, methods
combining explicit and implicit schemes have been explored by
Haaland,® Wentzell,? and, in our laboratory, by Berger.l’ Owing
to prior information about model constituents, measurement error
variance, or the analyte of interest, these methods in principle
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outperform those without prior information. However, depending
on how prior information is incorporated, these methods may lack
robustness due to inaccuracy in the prior information, especially
for methods incorporating known analyte spectra, such as hybrid
linear analysis (HLA).1

HLA utilizes a separately measured spectrum of the analyte
of interest together with the calibration data and outperforms
methods without prior information such as PLS. However, because
HIA relies on the subtraction of the analyte spectrum from the
calibration data, it is highly sensitive to the accuracy of the spectral
shape and its intensity. For complex turbid samples in which
absorption and scattering are likely to alter the analyte spectral
features in unknown ways, we find that the performance of HLA
is impaired. Motivated by advancing transcutaneous measurement
of blood analytes in vivo, we have developed a method that is
more robust against inaccuracies in the previously measured pure
analyte spectra.

This paper presents the new method to merge prior spectral
information with calibration data in an implicit calibration scheme.
Starting with the inverse mixture model as the forward problem,
we define the inverse problem with solution b. Instabilities
associated with the inversion process are removed by means of a
technique known as regularization,!! and prior information is
included by means of a spectral constraint. We thus call the
method constrained regularization (CR). We study the effective-
ness of CR using numerical simulations and demonstrate its
performance using experimental Raman spectra. We show that
with CR the standard error of prediction (SEP) is lower than
methods without prior information, such as PLS, and is less
affected by analyte covariations. We further show that CR is more
robust than our previously developed hybrid method, HLA, when
there are inaccuracies in the applied constraint, as often occurs
in complex or turbid samples such as biological tissues.

It should be mentioned that the terms prior information and
spectral constraints are used interchangeably for both CR and HLA
in this paper.

THEORY

Multivariate calibration can be viewed as an inverse problem.
Regularization methods,!! also known as ridge regression in the
statistical literature,!? are mostly used on ill-conditioned inverse
problems such as tomographic imaging, inverse scattering, and
image restoration. These methods seek to obtain a source
distribution in the presence of noisy (system-corrupted) data. In
our application, the noise is assumed to be uncorrelated, which
simplifies the analysis.

Implicit calibration schemes require a set of calibration spectra,
S, with each spectrum occupying a column of S, associated with
several known concentrations of the analyte of interest that are
expressed as a column vector, ¢, the jth element of which
corresponds to the jth column of S. Developing an accurate
regression vector, b, requires accurate values of ¢ and S. The
forward problem for our calibration method is defined by the linear
inverse mixture model for a single analyte:
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c=S". 2

The goal of the calibration procedure is to use the set of data
[S,c] to obtain an accurate b by inverting eq 2. The resulting b
can then be used in eq 1 to predict the analyte concentration, c,
of an independent prospective sample by measuring its spectrum,
s. The “accuracy” of b is usually judged by its ability to correctly
predict concentrations prospectively via eq 1.

There are two primary difficulties in directly inverting eq 2.
First, the system is usually underdetermined, i.e., there are more
variables (e.g., wavelengths) than equations (e.g., number of
calibration samples). Thus, direct inversion does not yield a unique
solution unless truncation of principal components or factors is
carried out. Second, even if a pseudoinverse exists and results in
a unique solution, such a solution tends to be unstable because
all measurements contain noise and error. That is, small variations
in ¢ or S can lead to large variations in b. Therefore, a more robust
solution is required.

The inversion process may be viewed in terms of singular value
decomposition (SVD),® in which the spectra of the sample set,
S, are decomposed into principal component directions, v;, with
amplitudes given by their respective singular values, o;. Most of
the information in S is captured in the principle components with
large o;. The singular values with small amplitudes, although
potentially important, are the main cause of instability.* Methods
to alleviate such instabilities are based on reducing the influence
of these small singular values,'4!> accomplished by means of a
regularization parameter, A. The regularized solution for b is given
by

b p uch
=N F—wv. 3
25 (3a)
with
- (3b)
] 0,12 + A2

u; and v; the eigenvectors of STS and SST, respectively, and p the
rank of S. Note that for ;> A, f = 1, and for 0y < A, f = o/ A%
Thus, one can interpret regularization as providing a smoothing
filter £ that limits the importance of the small singular values. For
A =0, eq 3 reduces to the least-squares solution for b. In PCR,
A = 0 and only the & largest singular values (k¢ < p) are used. In
Wiener filtering,’6 A is chosen to be the noise-to-signal ratio.
Equation 3 is the regularized solution of eq 2; i.e., no prior
information is included except by forcing the solution to be finite.
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However, eq 3 can be modified to incorporate prior information.
A convenient way to accomplish this is by viewing regularization
as the minimization of a quadratic cost function, ®:14

D(A,by) = |IS"b — c||* + Allb — by|)® @)

with ||a|| the Euclidean norm (i.e., magnitude) of a, and b, a
spectral constraint that introduces prior information about b. The
first term of @ is the model approximation error, and the second
term the norm of the difference between the solution and the
constraint, which controls the smoothness of the solution and its
deviation from the constraint. If by is zero, the solution to minimize
@ is given by eq 3. As mentioned above, for A = 0 the least-
squares solution is then obtained. In the other limit, in which A
goes to infinity, the solution is simply b = by. In the following,
we adopt a calibration method in which regularization with a
properly chosen spectral constraint, by, is employed, hence, the
name constrained regularization.

The CR solution, a generalization of eq 3, can be analytically
derived in SVD form as!®

ulc

b
b=3 £+ (1 = FA)WVby v, ®)
= 0j

A reasonable choice for by is the spectrum of the analyte of interest
because that is the solution for b in the absence of noise and
interferents. Another choice is the net analyte signal®” calculated
using all of the known pure analyte spectra. Such flexibility in
the selection of by is owing to the manner in which the constraint
is incorporated into the calibration algorithm. For CR, the spectral
constraint is included in a nonlinear fashion through minimization
of @, and is thus termed a “soft” constraint. On the other hand,
there is little flexibility for methods such as HLA, in which the
spectral constraint is algebraically subtracted from each sample
spectrum before performing PCA. We term this type of constraint
a “hard” constraint. In the Methods section, we use CR and HLA
as examples to show that the type of constraint affects the
robustness of hybrid methods concerning the accuracy of the
constraint.

Once by is chosen, application of CR is straightforward, as eq
5 is a direct solution of b and easy to evaluate. A trial value of A
is selected and b is calculated from eq 5 using leave-one-out cross-
validation!? on the calibration data set to obtain a trial prediction
residual error sum of squares (PRESS):

PRESS = Z (c; — &)* (6)

where ¢; and ¢ are reference and predicted concentrations,
respectively, and i denotes the sample index. A is then varied
until the minimum PRESS value is obtained. The resulting value
of A is then used with the full calibration data set, [S,c], to
calculate b. This regression vector can then be used to predict
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Figure 1. Measured Raman spectra of pure analytes dissolved in
water and typical experimental mixture spectra in clear and turbid
samples: (G) glucose, (C) creatinine, and (U) urea, (Sc) representa-
tive clear sample spectrum, and (St) representative turbid sample
spectrum. For the turbid samples, the only clearly identifiable analyte
peak is of creatinine at ~680 cm~1. Traces are normalized and offset
for clarity.

the concentrations of prospective samples with SEP values

calculated by the following formula:

SEP = @)

with # the number of samples in the prospective data set. Because
we compare several methods in this paper, it is convenient to
denote the b vector obtained from a particular method as byetod.

METHODS
In all studies, glucose and creatinine are chosen as the analytes

of interest, while urea is present as an additional active Raman
spectral interferent.

Numerical Simulations. Numerical spectra were generated
by forming linear combinations of constituent analyte spectra of
glucose (G), creatinine (C), and urea (U) as measured in our
Raman instrument!® (Figure 1). Spectra from 280 to 1750 cm™!
occupying 1051 CCD pixels were binned every 2 adjacent pixels
to produce Raman spectra of 525 data points each, reducing the
size of the data set for more rapid computation. Random
concentrations uniformly distributed between 0 and 10 were used
to generate 60 mixture sample spectra, with zero-mean Gaussian
white noise generated by MATLAB superimposed on the spectra.
The signal-to-noise ratio (SNR), defined here as the ratio of the
major Raman peak magnitude to the mean noise magnitude, was
~9. The uniform noise across the spectra and the SNR are
consistent with typical Raman spectra used for these types of
analytical measurements. Half of the noise-added spectra formed
the calibration set and the other half the prospective set. Different
calibration methods were applied to the calibration set to generate
the b vectors by minimizing the respective PRESS through leave-
one-out cross-validation. The b vectors were then used to calculate
the SEP among the prospective set. Repeating this entire proce-
dure, we obtained average SEP values and b vectors for different
methods. In all calibrations, three factors were needed to obtain
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optimal prediction in PLS and HLA. The respective pure analyte
spectrum was used as the spectral constraint for CR and HLA.
Additionally, because all sample-generating constituent analytes
were known, OLS was used to establish the best achievable
prediction.

Two numerical simulations have been performed to evaluate
the different methods under uncorrelated and correlated condi-
tions. In the first simulation, all analyte concentrations varied
randomly. In the second simulation, the glucose concentrations
correlated to creatinine concentrations with K2 ~ 0.5. Other
implementation details are provided in the Results and Discussion
section.

Experimental Mixture Spectra. Clear Samples—Uncorrelated.
In the first experiment, Raman spectra were acquired from 84
water-dissolved mixture samples composed of glucose, creatinine,
and urea, each with randomized concentration profiles from 0 to
50 mM, with respective mean ~25 mM. Half of the samples were
acquired on day 1 and the rest on day 2 to allow instrumental
drifts to be incorporated into the model. All samples were
measured in a 1-cm-path length quartz cuvette using a Raman
instrument described previously.!® Each spectrum was acquired
in 2 s with laser power equivalent to ~12 mW/mm? and a 1-mm?
spot size at the sample. A total of 90 spectra of each water-
dissolved analyte and of water were acquired and averaged for
better SNR. Pure analyte spectra were obtained by subtracting
the water plus quartz spectrum from the water-dissolved analyte
spectra. A representative sample spectrum (Sc) is displayed in
Figure 1. For data analysis, 21 samples randomly chosen from
each day formed the calibration set, and the other 42 samples
formed the prospective set. b vectors obtained using different
calibration methods were applied to the prospective set to calculate
SEP, and the randomized calibration—prediction procedure was
repeated 400 times for each method. In all calibrations with leave-
one-out cross-validation, five factors were needed to obtain optimal
predictions in both PLS and HLA. The pure analyte spectra were
used as the spectral constraints for both CR and HLA. Because
of measurement errors in the pure analyte concentrations (esti-
mated <1%), as well as to fully exploit HLA, we allowed the
amplitude of the pure analyte spectra to vary within 1%.

Clear Samples—Correlated. In the second experiment, Raman
spectra were acquired from 84 water-dissolved mixture samples
composed of glucose, creatinine, and urea. Analyte concentrations
were varied between 0 and 50 mM with mean ~25 mM. In 42
samples, the glucose concentrations correlated to creatinine
concentrations with 2 ~ 0.5, and in the other 42, they varied
randomly. The urea concentration was random in all 84 samples.
Half of the correlated samples (21) and the random samples (21)
were acquired on day 1 and the rest on day 2 to allow instrumental
drifts to be incorporated into the model. For data analysis, the 42
samples with the design correlation formed the calibration set
and the 42 random samples formed the prediction set. Owing to
the limited number of correlated samples, no randomized calibra-
tion—prediction sets were attempted. Other details are similar to
the first experiment.

Turbid Samples. In the third experiment, the same protocol
as in the first experiment was followed, but with the addition of
intralipid and India ink to increase turbidity. The analyte concen-
trations were uncorrelated. Raman spectra were acquired from

Simulations
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Figure 2. SEP values normalized to PLS results for glucose (G)
and creatinine (C) obtained from various methods in the first
(uncorrelated) and second (correlated) numerical simulations. See
text for details.

84 water-dissolved mixture samples composed of glucose, crea-
tinine, urea, India ink, and intralipid with randomized concentra-
tion profiles. Analyte concentrations were varied between 0 and
50 mM with mean ~25 mM. The concentration of India ink was
varied such that the sample absorption coefficients ranged from
0.1 to 0.2 cm™! with mean ~0.15 cm~. The concentration of
intralipid was varied such that the sample scattering coefficients
ranged from 35 to 75 cm™! with mean ~55 cm™L. The range of
optical property changes agree well with reported values measured
from human skin.’® A representative sample spectrum (Sy) is
displayed in Figure 1. In all calibrations with leave-one-out cross-
validation, no more than six factors were needed to obtain optimal
prediction in both PLS and HLA.

It should be mentioned that using prediction error (SEP) to
compare results from different methods rather than cross-validated
error can effectively avoid false interpretation based on chance
correlations and overfitting.

RESULTS AND DISCUSSION
All reported SEP values are normalized to the PLS SEP value

for better comparison among methods.

Numerical Simulations. As mentioned in the Methods
section, two numerical simulations were performed on spectra
generated from measured constituent analyte spectra. The first
simulation, in which analyte concentrations were uncorrelated,
demonstrates that CR significantly outperforms PLS when all
analyte concentrations vary in a random fashion. The results,
summarized in Figure 2 (uncorrelated), show that with the aid of
prior information, CR generates lower SEP values than PLS. The
reason for this is that bcg better converges to bors, therefore
improving prediction over PLS. It is expected that HLA is only
slightly inferior to OLS because the constraints are absolutely
correct in simulations.

The second simulation, in which correlations between analytes
were introduced, demonstrates that CR is less susceptible than
PLS to spurious correlations among covarying analytes. We
modified the calibration data set such that the concentration of
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Figure 3. SEP values normalized to PLS results for glucose (G)
and creatinine (C) obtained from various methods for clear sample
experiments without (uncorrelated) and with (correlated) analyte
correlations. See text for details.

glucose correlated to creatinine with R ~ 0.5. The prospective
set remained uncorrelated. The results are displayed in Figure 2
(correlated), in which CR possesses a much lower SEP value
relative to PLS. Again, it is expected that HLA is little affected by
analyte correlations because the constraints are absolutely correct
in simulations, and therefore, any correlations are broken after
removing the pure analyte contributions (discussed below).

It should be mentioned that the simulations allow us to study
and compare various methods under perfect control; however,
quantitative comparison with our experimental study is not
intended.

Experimental Mixture Spectra. Clear Samples—Uncorrelated.
Mean SEP values for glucose and creatinine obtained from PLS,
HLA, and CR in the first experiment are summarized in Figure 3
(uncorrelated). OLS results are not listed because the three-
constituent model does not account for all experimental variations,
e.g., low amounts of fluorescence from the quartz cuvette;
therefore, OLS no longer provides the best achievable perfor-
mance. Among the implicit calibration techniques, substantial
improvement over PLS is observed using the hybrid methods.
CR and HLA generate similar SEP values, suggesting that these
two methods have comparable performance under highly con-
trolled experimental conditions with clear samples and without
analyte correlations. The calculated 99% confidence intervals for
the differences in means are SEPpis_cr (0.28, 0.33) and SEPyia_cr
(—0.02, 0.02) for glucose, and SEPps—cr (0.06, 0.13) and SEPya-cr
(0.02, 0.09) for creatinine, indicating that the results in comparison
to PLS are statistically significant.

Clear Samples—Correlated. Mean SEP values for glucose and
creatinine obtained from PLS, HLA, and CR in the second
experiment are summarized in Figure 3 (correlated). Among the
implicit calibration techniques, substantial improvement over PLS
is observed using the hybrid methods. CR and HLA generate
similar SEP values, suggesting that these two methods have
comparable performance under highly controlled experimental
conditions with clear samples and with analyte correlations. In
principle, HLA should be less affected by analyte correlations than
CR; however, this is not observed in this experiment. Possible
explanations include imperfect experimental conditions and the
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Figure 4. SEP values normalized to PLS results for glucose (G)
and creatinine (C) obtained from various methods for the turbid
sample experiment. See text for details.

higher sensitivity of HLA to inaccurate constraints (discussed
below).

Turbid Samples. Mean SEP values for glucose and creatinine
obtained from PLS, HLA, and CR in the third experiment with
turbid samples are summarized in Figure 4. Substantial improve-
ment over both PLS and HILA is observed using CR. The
performance of HLA is significantly impaired as a result of the
turbidity-induced sampling volume variations of the analyte of
interest. In HLA, the analyte of interest is assumed to be present
in the data according to the reference concentrations. This
assumption leads to the first and most important step: the removal
of the spectral contribution of the analyte of interest from the data
by subtracting the known spectrum of the analyte according to
its concentration in each sample. As a result, the performance
critically depends on the “accuracy” of the constraint, as well as
the legitimacy of the assumption. In CR, however, the constraint
only guides the inversion, allowing the minimization algorithm
to arrive at the optimal solution, thereby reducing its dependency
on the accuracy of the constraint. Further, unlike HLA, which
models the residual data after removing the analyte contribution,
CR retains data fidelity and is unlikely to produce false built-in
analyte spectral features in the b vector. The calculated 99%
confidence intervals for the differences in means are SEPprs_cr
(0.18, 0.23) and SEPyia-cr (0.31, 0.37) for glucose and SEPpis—cr
(0.09, 0.15) and SEPya—cr (0.32, 0.38) for creatinine, indicating
that the results are statistically significant.

The results presented here demonstrate that there is a tradeoff
between maximizing prior information utilization and robustness
concerning the accuracy of such information. Multivariate calibra-
tion methods range from explicit methods with maximum use of
prior information (e.g., OLS, least robust when accurate model is
not obtainable), hybrid methods with a hard constraint (e.g., HLA),
hybrid methods with a soft constraint (e.g., CR), and implicit
methods with no prior information (e.g., PLS, most robust, but is
prone to be misled by spurious correlations). We believe CR
achieves the optimal balance between these ideals in practical
situations.

CONCLUSION

Constrained regularization is a new hybrid method for multi-
variate calibration. Strictly speaking, it should be categorized as
an implicit calibration method with one additional piece of
information, the spectrum of the analyte of interest. In the broader
context, regularization methods may perform somewhat better



than either PLS or PCR for certain data structures. A heuristic
explanation is that regularization provides a continuous “knob”
and, therefore, can be used to find a better balance between model
complexity and noise rejection. Our results show that, in addition
to this plausible intrinsic advantage, solid improvement can be
obtained by incorporating a meaningful solution constraint.

CR significantly outperforms methods without prior information
such as PLS and is less susceptible to spurious correlations with
covarying analytes. Compared to HLA, CR has superior robustness
with inaccurate spectral constraints. This robustness is crucial for
hybrid methods because it is difficult, if not impossible, to quantify
high-fidelity pure analyte spectra in complex systems such as
biological tissues. Further, CR naturally extends to situations in
which pure spectra of more than one constituent are also known.
In that case, a better choice of constraint (by) might be the net
analyte signal calculated from all the known pure spectra. CR is

(20) Frank, L. E.; Friedman, J. H. Technometrics 1993, 35, 109—135.

thus able to include more prior information without sacrificing
the principal advantage of implicit calibration: that only the
reference concentrations of the analyte of interest are required
in addition to the calibration spectra.
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